Parameter Individual Optimal Experimental Design and Calibration of Parametric Models

被引:3
作者
Palm, Nicolai [1 ]
Stroebl, Florian [2 ]
Palm, Herbert [2 ]
机构
[1] Ludwig Maximilians Univ Munchen, Munich Ctr Machine Learning MCML, Munich, Germany
[2] Munich Univ Appl Sci, Inst Sustainable Energy Syst ISES, Munich, Germany
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Maximum likelihood estimation; Parametric statistics; Covariance matrices; Computational modeling; Mathematical models; Calibration; Parameter estimation; Battery management systems; Aging; Parametric models; parameter estimation; design of experiments; optimal experimental design; battery aging; computer experiment; OPTIMIZATION; STATE;
D O I
10.1109/ACCESS.2022.3216364
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Parametric models allow to reflect system behavior in general and characterize individual system instances by specific parameter values. For a variety of scientific disciplines, model calibration by parameter quantification is therefore of central importance. As the time and cost of calibration experiments increases, the question of how to determine parameter values of required quality with a minimum number of experiments comes to the fore. In this paper, a methodology is introduced allowing to quantify and optimize achievable parameter extraction quality based on an experimental plan including a process and methods how to adapt the experimental plan for improved estimation of individually selectable parameters. The resulting parameter-individual optimal design of experiments (pi-OED) enables experimenters to extract a maximum of parameter-specific information from a given number of experiments. We demonstrate how to minimize variance or covariances of individually selectable parameter estimators by model-based calculation of the experimental designs. Using the Fisher Information Matrix in combination with the Cramer-Rao inequality, the pi-OED plan is reduced to a global optimization problem. The pi-OED workflow is demonstrated using computer experiments to calibrate a model describing calendrical aging of lithium-ion battery cells. Applying bootstrapping methods allows to also quantify parameter estimation distributions for further benchmarking. Comparing pi-OED based computer experimental results with those based on state-of-the-art designs of experiments, reveals its efficiency improvement. All computer experimental results are gained in Python and may be reproduced using a provided Jupyter Notebook along with the source code. Both are available under https://github.com/nicolaipalm/oed.
引用
收藏
页码:112515 / 112528
页数:14
相关论文
共 50 条
  • [1] Multi-Stage Optimal Experimental Design and Setup Strategies in Absence of System Pre-Knowledge
    Stroebl, Florian
    Schaeufl, Florian
    Bohlen, Oliver
    Palm, Herbert
    IEEE ACCESS, 2024, 12 : 120440 - 120453
  • [2] Optimal experimental design for parameter estimation of the Peleg model
    Paquet-Durand, O.
    Zettel, V.
    Hitzmann, B.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 140 : 36 - 42
  • [3] Optimal Experimental Design for Parameter Estimation of an IL-6 Signaling Model
    Sinkoe, Andrew
    Hahn, Juergen
    PROCESSES, 2017, 5 (03):
  • [4] A numerical identifiability test for state-space models application to optimal experimental design
    Hidalgo, ME
    Ayesa, E
    WATER SCIENCE AND TECHNOLOGY, 2001, 43 (07) : 339 - 346
  • [5] Comparing experimental design schemes in predictive food microbiology: Optimal parameter estimation of secondary models
    Mertens, Laurence
    Van Derlinden, Eva
    Van Impe, Jan F.
    JOURNAL OF FOOD ENGINEERING, 2012, 112 (03) : 119 - 133
  • [6] Deep optimal experimental design for parameter estimation problems
    Siddiqui, Md Shahriar Rahim
    Rahmim, Arman
    Haber, Eldad
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [7] Optimal Experimental Design for In-Field Calibration of a Nine-Parameter Triaxial Magnetometers Model
    Yu, Hairong
    Guo, Ying
    Ye, Lin
    Su, Steven Weidong
    IEEE SENSORS JOURNAL, 2024, 24 (11) : 17579 - 17587
  • [8] Approximations for Optimal Experimental Design in Power System Parameter Estimation
    Du, Xu
    Engelmann, Alexander
    Faulwasser, Timm
    Houska, Boris
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 5692 - 5697
  • [9] Model-driven optimal experimental design for calibrating cardiac electrophysiology models
    Lei, Chon Lok
    Clerx, Michael
    Gavaghan, David J.
    Mirams, Gary R.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 240
  • [10] Optimal experimental design for linear time invariant state-space models
    Duarte, Belmiro P. M.
    Atkinson, Anthony C.
    Oliveira, Nuno M. C.
    STATISTICS AND COMPUTING, 2021, 31 (04)