共 39 条
Fabrication and characterization of electrospun fatty acid form-stable phase change materials in the presence of copper nanoparticles
被引:36
作者:
Xie, Ning
[1
]
Niu, Junyi
[1
]
Gao, Xuenong
[1
,2
]
Fang, Yutang
[1
,2
]
Zhang, Zhengguo
[1
,2
]
机构:
[1] South China Univ Technol, Minist Educ, Key Lab Enhanced Heat Transfer & Energy Conservat, Sch Chem & Chem Engn, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Guangdong Engn Technol Res Ctr Efficient Heat Sto, Guangzhou, Peoples R China
基金:
中国国家自然科学基金;
关键词:
composite fiber;
copper nanoparticles (CNPs);
heat transfer rate;
phase change material (PCM);
thermal energy storage;
THERMAL-ENERGY STORAGE;
EUTECTIC MIXTURE;
COMPOSITE FIBERS;
PCM;
CONDUCTIVITY;
GRAPHENE;
ENHANCEMENT;
PERFORMANCE;
MANAGEMENT;
RETRIEVAL;
D O I:
10.1002/er.5543
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
Latent heat storage system using phase change materials (PCMs) has been recognized as one of the most useful technologies for energy conservation. In this study, a novel type of fatty acid eutectic of methyl palmitate (MP) and lauric acid (LA)/polyacrylonitrile (PAN) composite phase change fiber is prepared by single electrospinning method. Additionally, copper nanoparticles (CNPs) with different mass ratio are combined for improving the thermal conductivity of the PCM. The structure and morphology of the fabricated composite PCMs are observed by scanning electron microscopy (SEM), and the thermal properties and performance are also characterized. SEM results show that the liquid fatty acid has been fully stabled by the three-dimensional structure of the fibers. Good compatibility among the components of the composites is also demonstrated. Besides, the addition of nanoparticles leads to an improved thermal conductivity by over 115.2% and a phase transition temperature 21.24 degrees C as well as a high latent heat of 85.07 J/g. Moreover, excellent thermal reliability of the phase change fiber is confirmed by multiple thermal cycles. Hence, the composite PCM prepared in this study shows a promising potential for thermal energy system such as building insulating and thermal mass regulating textiles.
引用
收藏
页码:8567 / 8577
页数:11
相关论文