Edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition-generating trees

被引:4
作者
Yang, Weihua [1 ]
Li, Hengzhe [2 ]
He, Wei-hua [3 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[3] Univ Paris 11, CNRS, UMR 8623, Lab Rech Informat, F-91405 Orsay, France
关键词
bipancyclicity; Cayley graphs; edge-fault-tolerant bipancyclicity; symmetric group; 05C12; 68M10; 05A10; HYPER HAMILTONIAN LACEABILITY; STAR GRAPHS; INTERCONNECTION NETWORKS; MOBIUS CUBES; PANCYCLICITY; LINK;
D O I
10.1080/00207160.2014.953942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cayley graphs on the symmetric group plays an important role in the study of Cayley graphs as interconnection networks. Let Cay(S-n, B) be the Cayley graphs generated by transposition-generating trees. It is known that for any F subset of E(Cay(S-n, B)), if |F|<= n-3 and n >= 4, then there exists a hamiltonian cycle in Cay(Sn, B)-F. In this paper, we show that Cay(S-n, B)-F is bipancyclic if Cay(S-n, B) is not a star graph, for n >= 4 and |F|<= n-3.
引用
收藏
页码:1345 / 1352
页数:8
相关论文
共 50 条