Edge-fault-tolerant bipancyclicity of Cayley graphs generated by transposition-generating trees
被引:4
|
作者:
Yang, Weihua
论文数: 0引用数: 0
h-index: 0
机构:
Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R ChinaTaiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
Yang, Weihua
[1
]
Li, Hengzhe
论文数: 0引用数: 0
h-index: 0
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R ChinaTaiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
Li, Hengzhe
[2
]
He, Wei-hua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 11, CNRS, UMR 8623, Lab Rech Informat, F-91405 Orsay, FranceTaiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
He, Wei-hua
[3
]
机构:
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Shanxi, Peoples R China
[2] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[3] Univ Paris 11, CNRS, UMR 8623, Lab Rech Informat, F-91405 Orsay, France
The Cayley graphs on the symmetric group plays an important role in the study of Cayley graphs as interconnection networks. Let Cay(S-n, B) be the Cayley graphs generated by transposition-generating trees. It is known that for any F subset of E(Cay(S-n, B)), if |F|<= n-3 and n >= 4, then there exists a hamiltonian cycle in Cay(Sn, B)-F. In this paper, we show that Cay(S-n, B)-F is bipancyclic if Cay(S-n, B) is not a star graph, for n >= 4 and |F|<= n-3.