Fixed point theory in symmetric spaces with applications to probabilistic spaces

被引:56
|
作者
Hicks, TL [1 ]
Rhoades, BE
机构
[1] Univ Missouri, Dept Math & Stat, Rolla, MO 65409 USA
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
symmetric spaces; fixed points; probabilistic spaces;
D O I
10.1016/S0362-546X(98)00002-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:331 / 344
页数:14
相关论文
共 50 条
  • [31] Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications
    Xu, Shaoyuan
    Han, Yan
    Aleksic, Suzana
    Radenovic, Stojan
    AIMS MATHEMATICS, 2022, 7 (08): : 14895 - 14921
  • [32] Fixed point theory for generalized Ciric quasi-contraction maps in metric spaces
    Kiany, F.
    Amini-Harandi, A.
    FIXED POINT THEORY AND APPLICATIONS, 2013,
  • [33] FIXED POINT THEORY FOR QUASI-CONTRACTION MAPS IN b-METRIC SPACES
    Amini-Harandi, A.
    FIXED POINT THEORY, 2014, 15 (02): : 351 - 358
  • [34] Fixed-point theory for multivalued mappings in completely regular topological vector spaces
    O'Regan, D
    MATHEMATICAL AND COMPUTER MODELLING, 1998, 28 (10) : 7 - 15
  • [35] Fixed-point and random fixed-point theorems in cones of Banach spaces
    O'Regan, D
    MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (11-13) : 1473 - 1483
  • [36] Pseudosymmetric Spaces as Generalization of Symmetric spaces
    Bilal, Bilal
    Zeren, Yusuf
    Alizade, Betule
    Dal, Feyza Elif
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2023, 20 (01): : 61 - 79
  • [37] Coincidence and fixed points in symmetric spaces under strict contractions
    Imdad, M.
    Ali, Javid
    Khan, Ladlay
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (01) : 352 - 360
  • [38] Generalized modular fractal spaces and fixed point theorems
    Alireza Alihajimohammad
    Reza Saadati
    Advances in Difference Equations, 2021
  • [39] Generalized modular fractal spaces and fixed point theorems
    Alihajimohammad, Alireza
    Saadati, Reza
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [40] Fixed point and equilibrium theorems in pseudoconvex and related spaces
    Forgo, F
    Joó, I
    JOURNAL OF GLOBAL OPTIMIZATION, 1999, 14 (01) : 27 - 54