Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks

被引:14
|
作者
Pfister, Martin [1 ,2 ,3 ]
Schuetzenberger, Kornelia [1 ,2 ]
Pfeiffenberger, Ulrike [1 ,2 ]
Messner, Alina [1 ]
Chen, Zhe [1 ]
dos Santos, Valentin Aranha [1 ]
Puchner, Stefan [1 ,2 ,4 ]
Garhoefer, Gerhard [2 ,4 ]
Schmetterer, Leopold [1 ,2 ,4 ,5 ,6 ,7 ]
Groeschl, Martin [3 ]
Werkmeister, Rene M. [1 ,2 ]
机构
[1] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[2] Med Univ Vienna, Christian Doppler Lab Ocular & Dermal Effects Thi, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[3] Vienna Univ Technol, Inst Appl Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[4] Med Univ Vienna, Dept Clin Pharmacol, Waehringer Guertel 18-20, A-1090 Vienna, Austria
[5] The Academia, Singapore Eye Res Inst, 20 Coll Rd,Discovery Tower Level 6, Singapore 169856, Singapore
[6] Nanyang Technol Univ, Lee Kong Chian Sch Med, Novena Campus,11 Mandalay Rd, Singapore 308232, Singapore
[7] Duke NUS Med Sch, Ophthalmol & Visual Sci Acad Clin Program, 8 Coll Rd, Singapore 169857, Singapore
关键词
Compendex;
D O I
10.1364/BOE.10.001315
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We present a system for automatic determination of the intradermal volume of hydrogels based on optical coherence tomography (OCT) and deep learning. Volumetric image data was acquired using a custom-built OCT prototype that employs an akinetic swept laser at similar to 1310 nm with a bandwidth of 87 nm, providing an axial resolution of similar to 6.5 mu m in tissue. Three-dimensional data sets of a 10 mm x 10 mm skin patch comprising the intradermal filler and the surrounding tissue were acquired. A convolutional neural network using a u-net-like architecture was trained from slices of 100 OCT volume data sets where the dermal filler volume was manually annotated. Using six-fold cross-validation, a mean accuracy of 0.9938 and a Jaccard similarity coefficient of 0.879 were achieved. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:1315 / 1328
页数:14
相关论文
共 24 条
  • [1] Deep Convolutional Neural Networks for Automated Road Damage Detection
    Rakshitha, R.
    Srinath, S.
    Kumar, N. Vinay
    Rashmi, S.
    Poornima, B.V.
    Smart Innovation, Systems and Technologies, 2024, 405 SIST : 155 - 165
  • [2] Rainfall Prediction using Spatial Convolutional Neural Networks and Recurrent Neural Networks
    Lestari, Nadia Dwi Puji
    Djamal, Esmeralda Contessa
    2022 International Conference on Data Science and Its Applications, ICoDSA 2022, 2022, : 12 - 17
  • [3] Deepfake detection using convolutional vision transformers and convolutional neural networks
    Soudy, Ahmed Hatem
    Sayed, Omnia
    Tag-Elser, Hala
    Ragab, Rewaa
    Mohsen, Sohaila
    Mostafa, Tarek
    Abohany, Amr A.
    Slim, Salwa O.
    Neural Computing and Applications, 2024, 36 (31) : 19759 - 19775
  • [4] Snake Identification System Using Convolutional Neural Networks
    Dube, Samkeliso Suku
    Bhuru, Admire
    2022 1st Zimbabwe Conference of Information and Communication Technologies, ZCICT 2022, 2022,
  • [5] Point-based Attention Convolutional Neural Networks for Point Clouds Semantic Segmentation
    Li, Ying
    Li, Qing
    ACM International Conference Proceeding Series, 2022, : 1642 - 1647
  • [6] RETRACTED: A Lightweight Semantic Segmentation Algorithm Based on Deep Convolutional Neural Networks (Retracted Article)
    Yang, Chengzhi
    Guo, Hongjun
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [7] Modal decomposition of complex optical fields using convolutional neural networks
    Schiworski, Mitchell G.
    Brown, Daniel D.
    Ottaway, David J.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2021, 38 (11): : 1603 - 1611
  • [8] Inferring dissipation maps from videos using convolutional neural networks
    Bae, Youngkyoung
    Kim, Dong-Kyum
    Jeong, Hawoong
    PHYSICAL REVIEW RESEARCH, 2022, 4 (03):
  • [9] 5G cascaded channel estimation using convolutional neural networks
    Coutinho, Fábio D.L.
    Silva, Hugerles S.
    Georgieva, Petia
    Oliveira, Arnaldo S.R.
    Digital Signal Processing: A Review Journal, 2022, 126
  • [10] Real-time polyp detection model using convolutional neural networks
    Nogueira-Rodríguez, Alba
    Domínguez-Carbajales, Rubén
    Campos-Tato, Fernando
    Herrero, Jesús
    Puga, Manuel
    Remedios, David
    Rivas, Laura
    Sánchez, Eloy
    Iglesias, Águeda
    Cubiella, Joaquín
    Fdez-Riverola, Florentino
    López-Fernández, Hugo
    Reboiro-Jato, Miguel
    Glez-Peña, Daniel
    Neural Computing and Applications, 2022, 34 (13) : 10375 - 10396