Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives

被引:258
作者
Zampardi, Giorgia [1 ]
La Mantia, Fabio [1 ]
机构
[1] Univ Bremen, Energiespeicher & Energiewandlersyst, Bibliothekstr 1, D-28359 Bremen, Germany
关键词
Aqueous Zn-ion batteries (A-ZIBs); Cathodes materials; Copper hexacyanoferrate (CuHCF); Hexacyanoferrates (HCF); Zn-ion insertion; Hexacyanometallates; Metal hexacyanoferrates (MHCFs); Prussian blue analogues (PBAs); Prussian blue derivative; Zinc hexacyanoferrate (ZnHCF); Zinc-ion intercalation; COPPER HEXACYANOFERRATE; ZINC; ENERGY; CATHODE; INTERCALATION; MECHANISM; ELECTROCHEMISTRY; TRANSITION; FRAMEWORK;
D O I
10.1016/j.coelec.2020.01.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The urgency of integrating renewable energy sources in the power grid has pushed the development of aqueous metal-ion batteries because of their low cost, nontoxicity, high safety, and environmentally friendliness. Among the variety of aqueous metal-ion batteries that are currently under development, aqueous Zn-ion batteries (A-ZIBs) have recently gained a great attention because of their high specific energy and high reversibility in aqueous solutions, together with the low cost and high abundancy of the zinc. In this article, the authors intend to present an overview of the Prussian blue analogue materials, which are among the most promising materials for positive electrodes in A-ZIBs because of their easier synthesis route, reversible ion-insertion, high safety, and low toxicity, highlighting their strength points and open challenges.
引用
收藏
页码:84 / 92
页数:9
相关论文
共 59 条
[1]   Polyelectrolyte-coated carbons used in the generation of blue energy from salinity differences [J].
Ahualli, S. ;
Jimenez, M. L. ;
Fernandez, M. M. ;
Iglesias, G. ;
Brogioli, D. ;
Delgado, A. V. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (46) :25241-25246
[2]   Energy storage and its use with intermittent renewable energy [J].
Barton, JP ;
Infield, DG .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2004, 19 (02) :441-448
[3]   The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies [J].
Bauer, Alexander ;
Song, Jie ;
Vail, Sean ;
Pan, Wei ;
Barker, Jerry ;
Lu, Yuhao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[4]   Rechargeable batteries with aqueous electrolytes [J].
Beck, F ;
Ruetschi, P .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2467-2482
[5]   Heat recovery in energy production from low temperature heat sources [J].
Brogioli, Doriano ;
La mantia, Fabio .
AICHE JOURNAL, 2019, 65 (03) :980-991
[6]   Extracting Renewable Energy from a Salinity Difference Using a Capacitor [J].
Brogioli, Doriano .
PHYSICAL REVIEW LETTERS, 2009, 103 (05)
[7]   Prototype System of Rocking-Chair Zn-Ion Battery Adopting Zinc Chevrel Phase Anode and Rhombohedral Zinc Hexacyanoferrate Cathode [J].
Chae, Munseok S. ;
Hong, Seung-Tae .
BATTERIES-BASEL, 2019, 5 (01)
[8]   Direct observation of adsorbed H2-framework interactions in the Prussian Blue analogue MnII3[CoIII(CN)6]2:: The relative importance of accessible coordination sites and van der Waals interactions [J].
Chapman, Karena W. ;
Chupas, Peter J. ;
Maxey, Evan R. ;
Richardson, James W. .
CHEMICAL COMMUNICATIONS, 2006, (38) :4013-4015
[9]   Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies [J].
Delucchi, Mark A. ;
Jacobson, Mark Z. .
ENERGY POLICY, 2011, 39 (03) :1170-1190
[10]   Effect of the mass transport limitations on the stability window of electrolytes for metal-ion batteries [J].
Dushina, Anastasia ;
Stojadinovic, Jelena ;
La Mantia, Fabio .
ELECTROCHIMICA ACTA, 2015, 167 :262-267