A logical explanation of structurally unfit X-ray diffraction peaks in nanoferroelectrics

被引:0
作者
Dudhe, C. M. [1 ]
Sakhare, B. K. [2 ]
Panchbhai, S. S. [3 ]
Khambadkar, S. J. [1 ]
Dhoke, N. V. [1 ]
Chaudhari, C. P. [1 ]
Palikundwar, U. A. [4 ]
机构
[1] Inst Sci, Dept Phys, Nagpur 440001, Maharashtra, India
[2] SDSM Coll, Dept Phys, Palghat 401404, India
[3] Vidyabharti Coll, Dept Phys, Seloo 442104, India
[4] RTM Nagpur Univ, Dept Phys, Nagpur 440033, Maharashtra, India
关键词
X-ray diffraction; domains; ferroelectrics; nanoparticles; transmission electron microscopy; BARIUM-TITANATE; SIZE; NANOPARTICLES; POLARIZATION; NANODOMAINS;
D O I
10.1007/s12034-017-1528-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the present paper we suggest the cause and solution of some unidentified X-ray diffraction (XRD) peaks in ferroelectric nanoparticles. Indeed, a relationship between the structurally unfit XRD peaks and domains in the ferroelectric nanoparticles is suggested. BaTiO3, PbTiO3 and Sr0.5Ba0.5Nb2O6 nanoparticles were used as trial samples. Diffraction of X-rays by domain grating was considered for the occurrence of unfit peaks. It was found that domain widths corresponding to some structurally unfit minor peaks of all three trail samples show good agreement to the values estimated from the transmission electron microscopy images. The study can be used to estimate the width of nanodomains (within 5-10 angstrom) in ferroelectric nanoparticles. Thus, the study seems to be highly important for the advancement of nanoferroelectricity.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Surface/interface X-ray diffraction [J].
Chen, HD .
MATERIALS CHEMISTRY AND PHYSICS, 1996, 43 (02) :116-125
[42]   The Limits of X-ray Diffraction Theory [J].
Fewster, Paul F. .
CRYSTALS, 2023, 13 (03)
[43]   X-ray diffraction/Calorimetry coupling [J].
C. Allais ;
G. Keller ;
P Lesieur ;
M. Ollivon ;
F. Artzner .
Journal of Thermal Analysis and Calorimetry, 2003, 74 :723-728
[44]   Energy dispersive X-ray diffraction [J].
Kaempfe, Bernd ;
Luczak, Falk ;
Michel, Bernd .
PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2006, 22 (06) :391-396
[45]   X-ray diffraction in magnetic fields [J].
Pototschnig, P ;
Gratz, E ;
Kirchmayr, H ;
Lindbaum, A .
JOURNAL OF ALLOYS AND COMPOUNDS, 1997, 247 :234-239
[46]   Medipix 2 in X-ray diffraction [J].
de Vries, R. I. ;
Weijers, S. ;
Bethke, K. ;
Kogan, V. ;
Vasterink, J. ;
Kharchenko, A. ;
Fransen, M. ;
Bethke, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 576 (01) :164-168
[47]   Electrochemical discharge of nanocrystalline magnetite: structure analysis using X-ray diffraction and X-ray absorption spectroscopy [J].
Menard, Melissa C. ;
Takeuchi, Kenneth J. ;
Marschilok, Amy C. ;
Takeuchi, Esther S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (42) :18539-18548
[48]   Electronic structure of nanoscale Cu/Pt alloys: A combined X-ray diffraction and X-ray absorption investigations [J].
Chen, Xing ;
Chu, Wangsheng ;
Cai, Quan ;
Xia, Dingguo ;
Wu, Zhonghua ;
Wu, Ziyu .
RADIATION PHYSICS AND CHEMISTRY, 2006, 75 (11) :1622-1625
[49]   Transformation of nano-diamonds to carbon nano-onions studied by X-ray diffraction and molecular dynamics [J].
Hawelek, L. ;
Brodka, A. ;
Tomita, S. ;
Dore, J. C. ;
Honkimaeki, V. ;
Burian, A. .
DIAMOND AND RELATED MATERIALS, 2011, 20 (10) :1333-1339
[50]   Thermal expansion coefficient of carbon-supported Pt nanoparticles: In-situ X-ray diffraction study [J].
Leontyev, I. N. ;
Kulbakov, A. A. ;
Allix, M. ;
Rakhmatullin, A. ;
Kuriganova, A. B. ;
Maslova, O. A. ;
Smirnova, N. V. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (05)