Crack propagation in functionally graded 2D structures: A finite element phase-field study

被引:17
|
作者
Torabi, J. [1 ]
Ansari, R. [1 ]
机构
[1] Univ Guilan, Fac Mech Engn, POB 3756, Rasht, Iran
关键词
Crack growth; 2D structure; Functionally graded material; Phase-field modeling; Finite element method; BRITTLE-FRACTURE; SIMULATION; GROWTH; IMPLEMENTATION; MODELS;
D O I
10.1016/j.tws.2020.106734
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The finite element phase-field modeling is presented to study the crack propagation in functionally graded (FG) two-dimensional structures. Exploring the influences of the effective parameters of the staggered solver such as load increment and the number of staggered iteration on the phase-field solution and crack propagation analysis of FG structures is the main objective the research undertaken. Based on the concept of FG materials, the material properties are continuously varied along the length and width of the structure according to the Voigt rule of mixture. The finite element phase-field formulation is derived in the variational framework, and the staggered scheme together with the hybrid formulation is implemented to solve the problem and find the crack growth path. Various benchmark problems are modeled and the influences of material distribution pattern, load increment and the number of staggered iteration on the fracture of FG two-dimensional structures are extensively examined. The results revealed that considering large load increment or one staggered iteration considerably overestimate the fracture resistance of FG structures.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Phase-field modeling of brittle fracture in functionally graded materials using exponential finite elements
    Sidharth, P. C.
    Rao, B. N.
    ENGINEERING FRACTURE MECHANICS, 2023, 291
  • [22] Finite element simulation of crack propagation based on phase field theory
    Cho, Joonyeoun
    Lee, Kwan-Soo
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (10) : 3073 - 3085
  • [23] A phase-field modeling for brittle fracture and crack propagation based on the cell-based smoothed finite element method
    Bhowmick, Sauradeep
    Liu, Gui Rong
    ENGINEERING FRACTURE MECHANICS, 2018, 204 : 369 - 387
  • [24] A phase-field model for crack growth in electro-mechanically coupled functionally graded piezo ceramics
    Mohanty, Shaswat
    Kumbhar, Pramod Yallappa
    Swaminathan, Narasimhan
    Annabattula, Ratnakumar
    SMART MATERIALS AND STRUCTURES, 2020, 29 (04)
  • [25] Phase-field modeling of crack propagation in multiphase systems
    Schneider, Daniel
    Schoof, Ephraim
    Huang, Yunfei
    Selzer, Michael
    Nestler, Britta
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 186 - 195
  • [26] A hybrid adaptive finite element phase-field method for quasi-static and dynamic brittle fracture
    Tian, Fucheng
    Tang, Xiaoliang
    Xu, Tingyu
    Yang, Junsheng
    Li, Liangbin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 120 (09) : 1108 - 1125
  • [27] Phase-field buckling analysis of cracked stiffened functionally graded plates
    Nam Vu Hoai
    Duc Hong Doan
    Nguyen Minh Khoa
    Thom Van Do
    Hong Thi Tran
    COMPOSITE STRUCTURES, 2019, 217 : 50 - 59
  • [28] Hybrid phase field simulation of dynamic crack propagation in functionally graded glass-filled epoxy
    Duc Hong Doan
    Tinh Quoc Bui
    Nguyen Dinh Duc
    Fushinobu, Kazuyoshi
    COMPOSITES PART B-ENGINEERING, 2016, 99 : 266 - 276
  • [29] A new graded singular finite element for crack problems in functionally graded materials
    Mohamad Molavi Nojumi
    Xiaodong Wang
    International Journal of Fracture, 2017, 205 : 203 - 220
  • [30] Mixed Finite Element for Crack Analysis in Functionally Graded Material
    Benmalek, Haroune
    Bouziane, Salah
    Bouzerd, Hamoudi
    Remmani, Sid Ahmed
    INTERNATIONAL JOURNAL OF SUSTAINABLE CONSTRUCTION ENGINEERING AND TECHNOLOGY, 2023, 14 (04): : 227 - 237