Dielectric function representation by B-splines

被引:236
作者
Johs, Blaine [1 ]
Hale, Jeffrey S. [1 ]
机构
[1] JA Woollam Co Inc, Lincoln, NE 68508 USA
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2008年 / 205卷 / 04期
关键词
D O I
10.1002/pssa.200777754
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate dielectric function values are essential for spectroscopic ellipsometry data analysis by traditional optical model-based analysis techniques. In this paper, we show that B-spline basis functions offer many advantages for parameterizing dielectric functions. A Kramers-Kronig consistent B-spline formulation, based on the standard B-spline recursion relation, is derived. B-spline representations of typical semiconductor and metal dielectric functions are also presented. [GRAPHICS] Kramers-Kromg consistent B-spline basis functions. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:715 / 719
页数:5
相关论文
共 50 条
[41]   On Hermite interpolation with B-splines [J].
Seidel, Hans-Peter .
Computer Aided Geometric Design, 1991, 8 (06) :439-441
[42]   On the B-splines effective completeness [J].
Argenti, Luca ;
Colle, Renato .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (09) :1442-1447
[43]   Interlacing property for B-splines [J].
Foucart, S .
JOURNAL OF APPROXIMATION THEORY, 2005, 135 (01) :1-21
[44]   Kernel B-splines and interpolation [J].
M. Bozzini ;
L. Lenarduzzi ;
R. Schaback .
Numerical Algorithms, 2006, 41 :1-16
[45]   An algebraic characterization of B-splines [J].
Kamont, Anna ;
Passenbrunner, Markus .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 524 (01)
[46]   B-splines of arbitrary power [J].
Kalitkin, NN ;
Shlyakhov, NM .
DOKLADY AKADEMII NAUK, 1999, 367 (02) :157-160
[47]   Interpolation with nonuniform B-splines [J].
Margolis, E ;
Eldar, YC .
2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, :577-580
[48]   Multivariate complex B-splines [J].
Massoptist, Peter ;
Forster, Brigitte .
WAVELETS XII, PTS 1 AND 2, 2007, 6701
[49]   Natural interpolation by B-splines [J].
Kalitkin, NN ;
Shlyakhov, NM .
DOKLADY MATHEMATICS, 2000, 62 (02) :194-198
[50]   Testing for additivity with B-splines [J].
Hengjian CUI Xuming HE Li LIU Department of Statistics and Financial Mathematics School of Mathematical Sciences Beijing Normal University Beijing China ;
Department of Statistics University of Illinois Champaign IL USA ;
National Institute of Statistical Science Durham NC USA .
Science in China(Series A:Mathematics), 2007, (06) :841-858