Personalizing treatment in end-stage kidney disease: deciding between haemodiafiltration and haemodialysis based on individualized treatment effect prediction

被引:8
作者
van Kruijsdijk, Rob C. M. [1 ,2 ]
Vernooij, Robin W. M. [2 ,3 ]
Bots, Michiel L. [3 ]
Peters, Sanne A. E. [3 ,4 ]
Dorresteijn, Jannick A. N. [5 ]
Visseren, Frank L. J. [5 ]
Blankestijn, Peter J. [2 ]
Debray, Thomas P. A. [3 ]
机构
[1] Radboud Univ Nijmegen, Med Ctr, Dept Nephrol, Nijmegen, Netherlands
[2] Univ Med Ctr Utrecht, Dept Nephrol & Hypertens, Utrecht, Netherlands
[3] Univ Utrecht, Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[4] Imperial Coll London, George Inst Global Hlth, London, England
[5] Univ Med Ctr Utrecht, Dept Vasc Med, Utrecht, Netherlands
基金
欧盟地平线“2020”;
关键词
haemodiafiltration; haemodialysis; treatment effect heterogeneity; treatment effect prediction; ALL-CAUSE MORTALITY; ONLINE HEMODIAFILTRATION; PROPORTIONAL-HAZARDS; MODELS; SURVIVAL; RISK;
D O I
10.1093/ckj/sfac153
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Background Previous studies suggest that haemodiafiltration reduces mortality compared with haemodialysis in patients with end-stage kidney disease (ESKD), but the controversy surrounding its benefits remains and it is unclear to what extent individual patients benefit from haemodiafiltration. This study is aimed to develop and validate a treatment effect prediction model to determine which patients would benefit most from haemodiafiltration compared with haemodialysis in terms of all-cause mortality. Methods Individual participant data from four randomized controlled trials comparing haemodiafiltration with haemodialysis on mortality were used to derive a Royston-Parmar model for the prediction of absolute treatment effect of haemodiafiltration based on pre-specified patient and disease characteristics. Validation of the model was performed using internal-external cross validation. Results The median predicted survival benefit was 44 (Q1-Q3: 44-46) days for every year of treatment with haemodiafiltration compared with haemodialysis. The median survival benefit with haemodiafiltration ranged from 2 to 48 months. Patients who benefitted most from haemodiafiltration were younger, less likely to have diabetes or a cardiovascular history and had higher serum creatinine and albumin levels. Internal-external cross validation showed adequate discrimination and calibration. Conclusion Although overall mortality is reduced by haemodiafiltration compared with haemodialysis in ESKD patients, the absolute survival benefit can vary greatly between individuals. Our results indicate that the effects of haemodiafiltration on survival can be predicted using a combination of readily available patient and disease characteristics, which could guide shared decision-making.
引用
收藏
页码:1924 / 1931
页数:8
相关论文
共 31 条
[1]  
[Anonymous], H4RT PROT
[2]   Multiple imputation of covariates by fully conditional specification: Accommodating the substantive model [J].
Bartlett, Jonathan W. ;
Seaman, Shaun R. ;
White, Ian R. ;
Carpenter, James R. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2015, 24 (04) :462-487
[3]   Benefits and harms of high-dose haemodiafiltration versus high-flux haemodialysis: the comparison of high-dose haemodiafiltration with high-flux haemodialysis (CONVINCE) trial protocol [J].
Blankestijn, Peter J. ;
Fischer, Kathrin, I ;
Barth, Claudia ;
Cromm, Krister ;
Canaud, Bernard ;
Davenport, Andrew ;
Grobbee, Diederick E. ;
Hegbrant, Jorgen ;
Roes, Kit C. ;
Rose, Matthias ;
Strippoli, Giovanni F. M. ;
Vernooij, Robin W. M. ;
Woodward, Mark ;
de Wit, G. Ardine ;
Bots, Michiel L. .
BMJ OPEN, 2020, 10 (02)
[4]   Are There Any Downsides, Barriers, or Challenges in Delivering Hemodiafiltration in Everyday Clinical Practice? [J].
Blankestijn, Peter J. ;
Grooteman, Muriel ;
Nube, Menso .
SCIENTIFIC ASPECTS OF DIALYSIS THERAPY: JSDT/ISBP ANNIVERSARY EDITION, 2017, 189 :30-35
[5]   Mortality risk for patients receiving hemodiafiltration versus hemodialysis: European results from the DOPPS [J].
Canaud, B. ;
Bragg-Gresham, J. L. ;
Marshall, M. R. ;
Desmeules, S. ;
Gillespie, B. W. ;
Depner, T. ;
Klassen, P. ;
Port, F. K. .
KIDNEY INTERNATIONAL, 2006, 69 (11) :2087-2093
[6]   Clinical and predictive value of simplified creatinine index used as muscle mass surrogate in end-stage kidney disease haemodialysis patients-results from the international MONitoring Dialysis Outcome initiative [J].
Canaud, Bernard ;
Ye, Xiaoling ;
Usvyat, Len ;
Kooman, Jeroen ;
van der Sande, Frank ;
Raimann, Jochen ;
Wang, Yuedong ;
Kotanko, Peter .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2020, 35 (12) :2161-2171
[7]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1002/bjs.9736, 10.1038/bjc.2014.639, 10.7326/M14-0697, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1136/bmj.g7594, 10.1111/eci.12376, 10.1016/j.eururo.2014.11.025, 10.1186/s12916-014-0241-z]
[8]   Higher convection volume exchange with online hemodiafiltration is associated with survival advantage for dialysis patients: the effect of adjustment for body size [J].
Davenport, Andrew ;
Peters, Sanne A. E. ;
Bots, Michiel L. ;
Canaud, Bernard ;
Grooteman, Muriel P. C. ;
Asci, Gulay ;
Locatelli, Francesco ;
Maduell, Francisco ;
Morena, Marion ;
Nube, Menso J. ;
Ok, Ercan ;
Torres, Ferran ;
Woodward, Mark ;
Blankestijn, Peter J. .
KIDNEY INTERNATIONAL, 2016, 89 (01) :193-199
[9]   A framework for developing, implementing, and evaluating clinical prediction models in an individual participant data meta-analysis [J].
Debray, Thomas P. A. ;
Moons, Karel G. M. ;
Ahmed, Ikhlaaq ;
Koffijberg, Hendrik ;
Riley, Richard David .
STATISTICS IN MEDICINE, 2013, 32 (18) :3158-3180
[10]   How to translate clinical trial results into gain in healthy life expectancy for individual patients [J].
Dorresteijn, Jannick A. N. ;
Kaasenbrood, Lotte ;
Cook, Nancy R. ;
van Kruijsdijk, Rob C. M. ;
van der Graaf, Yolanda ;
Visseren, Frank L. J. ;
Ridker, Paul M. .
BMJ-BRITISH MEDICAL JOURNAL, 2016, 352