Modeling ionization and recombination from low energy nuclear recoils in liquid argon

被引:4
作者
Foxe, M. [1 ,2 ,3 ]
Hagmann, C. [2 ]
Jovanovic, I. [1 ]
Bernstein, A. [2 ]
Joshi, T. H. [2 ,4 ]
Kazkaz, K. [2 ]
Mozin, V. [2 ]
Pereverzev, S. V. [2 ]
Sangiorgio, S. [2 ]
Sorensen, P. [2 ]
机构
[1] Penn State Univ, Dept Mech & Nucl Engn, University Pk, PA 16802 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Pacific NW Natl Lab, Richland, WA 99352 USA
[4] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA
关键词
Liquid argon; Ionization yield; Neutrino; Dark matter; ELECTRON-ION RECOMBINATION; DRIFT VELOCITY; AR; TRANSPORT; DETECTOR; XENON; FORM;
D O I
10.1016/j.astropartphys.2015.03.005
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Coherent elastic neutrino-nucleus scattering (CENNS) is an as-yet undetected, flavor-independent neutrino interaction predicted by the Standard Model. Detection of CENNS could offer benefits for detection of supernova and solar neutrinos in astrophysics, or for detection of antineutrinos for nuclear reactor monitoring and nuclear nonproliferation. One challenge with detecting CENNS is the low energy deposition associated with a typical CENNS nuclear recoil. In addition, nuclear recoils result in lower ionization yields than those produced by electron recoils of the same energy. While a measurement of the nuclear recoil ionization yield in liquid argon in the keV energy range has been recently reported, a corresponding model for low-energy ionization yield in liquid argon does not exist. For this reason, a Monte Carlo simulation has been developed to predict the ionization yield at sub-10 key energies. The model consists of two distinct components: (1) simulation of the atomic collision cascade with production of ionization, and (2) the thermalization and drift of ionization electrons in an applied electric field including local recombination. As an application of our results we report updated estimates of detectable ionization in liquid argon from CENNS at a nuclear reactor. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 29
页数:6
相关论文
共 47 条
[1]   First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility [J].
Akerib, D. S. ;
Araujo, H. M. ;
Bai, X. ;
Bailey, A. J. ;
Balajthy, J. ;
Bedikian, S. ;
Bernard, E. ;
Bernstein, A. ;
Bolozdynya, A. ;
Bradley, A. ;
Byram, D. ;
Cahn, S. B. ;
Carmona-Benitez, M. C. ;
Chan, C. ;
Chapman, J. J. ;
Chiller, A. A. ;
Chiller, C. ;
Clark, K. ;
Coffey, T. ;
Currie, A. ;
Curioni, A. ;
Dazeley, S. ;
de Viveiros, L. ;
Dobi, A. ;
Dobson, J. ;
Dragowsky, E. M. ;
Druszkiewicz, E. ;
Edwards, B. ;
Faham, C. H. ;
Fiorucci, S. ;
Flores, C. ;
Gaitskell, R. J. ;
Gehman, V. M. ;
Ghag, C. ;
Gibson, K. R. ;
Gilchriese, M. G. D. ;
Hall, C. ;
Hanhardt, M. ;
Hertel, S. A. ;
Horn, M. ;
Huang, D. Q. ;
Ihm, M. ;
Jacobsen, R. G. ;
Kastens, L. ;
Kazkaz, K. ;
Knoche, R. ;
Kyre, S. ;
Lander, R. ;
Larsen, N. A. ;
Lee, C. .
PHYSICAL REVIEW LETTERS, 2014, 112 (09)
[2]   Detection of reactor antineutrino coherent scattering off nuclei with a two-phase noble gas detector [J].
Akimov, D. ;
Bondar, A. ;
Burenkov, A. ;
Buzulutskov, A. .
JOURNAL OF INSTRUMENTATION, 2009, 4
[3]  
Akimov D.Yu., 2014, J INSTRUM, V9
[4]   Observation of the dependence on drift field of scintillation from nuclear recoils in liquid argon [J].
Alexander, T. ;
Back, H. O. ;
Cao, H. ;
Cocco, A. G. ;
DeJongh, F. ;
Fiorillo, G. ;
Galbiati, C. ;
Grandi, L. ;
Kendziora, C. ;
Lippincott, W. H. ;
Loer, B. ;
Love, C. ;
Manenti, L. ;
Martoff, C. J. ;
Meng, Y. ;
Montanari, D. ;
Mosteiro, P. ;
Olvitt, D. ;
Pordes, S. ;
Qian, H. ;
Rossi, B. ;
Saldanha, R. ;
Tan, W. ;
Tatarowicz, J. ;
Walker, S. ;
Wang, H. ;
Watson, A. W. ;
Westerdale, S. ;
Yoo, J. .
PHYSICAL REVIEW D, 2013, 88 (09)
[5]   First limits on WIMP nuclear recoil signals in ZEPLIN-II:: A two-phase xenon detector for dark matter detection [J].
Alner, G. J. ;
Araujo, H. M. ;
Bewick, A. ;
Bungau, C. ;
Camanzi, B. ;
Carson, M. J. ;
Cashmore, R. J. ;
Chagani, H. ;
Chepel, V. ;
Cline, D. ;
Davidge, D. ;
Davies, J. C. ;
Daw, E. ;
Dawson, J. ;
Durkin, T. ;
Edwards, B. ;
Gamble, T. ;
Gao, J. ;
Ghag, C. ;
Howard, A. S. ;
Jones, W. G. ;
Joshi, M. ;
Korolkova, E. V. ;
Kudryavtsev, V. A. ;
Lawson, T. ;
Lebedenko, V. N. ;
Lewin, J. D. ;
Lightfoot, P. ;
Lindote, A. ;
Liubarsky, I. ;
Lopes, M. I. ;
Luescher, R. ;
Majewski, P. ;
Mavrokoridis, K. ;
McMillan, J. E. ;
Morgan, B. ;
Muna, D. ;
Murphy, A. St. J. ;
Neves, F. ;
Nicklin, G. G. ;
Ooi, W. ;
Paling, S. M. ;
da Cunha, J. Pinto ;
Plank, S. J. S. ;
Preece, R. M. ;
Quenby, J. J. ;
Robinson, M. ;
Salinas, G. ;
Sergiampietri, F. ;
Silva, C. .
ASTROPARTICLE PHYSICS, 2007, 28 (03) :287-302
[6]  
[Anonymous], PHYS REV LETT
[7]  
[Anonymous], COMMUNICATIONS
[8]   Design and performance of the XENON10 dark matter experiment [J].
Aprile, E. ;
Angle, J. ;
Arneodo, F. ;
Baudis, L. ;
Bernstein, A. ;
Bolozdynya, A. ;
Brusov, P. ;
Coelho, L. C. C. ;
Dahl, C. E. ;
DeViveiros, L. ;
Ferella, A. D. ;
Fernandes, L. M. P. ;
Fiorucci, S. ;
Gaitskell, R. J. ;
Giboni, K. L. ;
Gomez, R. ;
Hasty, R. ;
Kastens, L. ;
Kwong, J. ;
Lopes, J. A. M. ;
Madden, N. ;
Manalaysay, A. ;
Manzur, A. ;
McKinsey, D. N. ;
Monzani, M. E. ;
Ni, K. ;
Oberlack, U. ;
Orboeck, J. ;
Orlandi, D. ;
Plante, G. ;
Santorelli, R. ;
dos Santos, J. M. F. ;
Shagin, P. ;
Shutt, T. ;
Sorensen, P. ;
Schulte, S. ;
Tatananni, E. ;
Winant, C. ;
Yamashita, M. .
ASTROPARTICLE PHYSICS, 2011, 34 (09) :679-698
[9]  
Aprile E., 2006, NOBLE GAS DETECTORS, P62
[10]  
ArDM Collaboration, 2008, ARG DARK MATT EXP AR