Extending the Tutte and Bollobas-Riordan polynomials to rank 3 weakly coloured stranded graphs

被引:1
作者
Avohou, Remi C. [1 ,2 ]
Ben Geloun, Joseph [1 ,3 ]
Hounkonnou, Mahouton N. [1 ]
机构
[1] Univ Abomey Calavi, ICMPA UNESCO Chair, Int Chair Math Phys & Applicat, 072BP50, Cotonou, Benin
[2] Ecole Normale Super Natitingou, BP72, Natitingou, Benin
[3] Univ Paris 13, Sorbonne Paris Cite, Inst Galilee, CNRS UMR 7030, 99 JB Clement LIPN, F-93430 Villetaneuse, France
关键词
Graph theory; Tutte polynomial; Bollobas-Riordan polynomial; tensor models; RIBBON GRAPHS; GRAVITY;
D O I
10.1017/S096354832100050X
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Bollobas-Riordan (BR) polynomial [(2002), Math. Ann. 323 81] is a universal polynomial invariant for ribbon graphs. We find an extension of this polynomial for a particular family of combinatorial objects, called rank 3 weakly coloured stranded graphs. Stranded graphs arise in the study of tensor models for quantum gravity in physics, and generalize graphs and ribbon graphs. We present a seven-variable polynomial invariant of these graphs, which obeys a contraction/deletion recursion relation similar to that of the Tutte and BR polynamials. However, it is defined on a much broader class of objects, and furthermore captures properties that are not encoded by the Tutte or BR polynomials.
引用
收藏
页码:507 / 549
页数:43
相关论文
共 29 条
  • [1] 3-DIMENSIONAL SIMPLICIAL QUANTUM-GRAVITY AND GENERALIZED MATRIX MODELS
    AMBJORN, J
    DURHUUS, B
    JONSSON, T
    [J]. MODERN PHYSICS LETTERS A, 1991, 6 (12) : 1133 - 1146
  • [2] Avohou, IN PRESS
  • [3] Renormalization and Hopf algebraic structure of the five-dimensional quartic tensor field theory
    Avohou, Remi C.
    Rivasseau, Vincent
    Tanasa, Adrian
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (48)
  • [4] On terminal forms for topological polynomials for ribbon graphs: The N-petal flower
    Avohou, Remi C.
    Ben Geloun, Joseph
    Livine, Etera R.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 : 348 - 366
  • [5] Polynomial Invariants for Arbitrary Rank D Weakly-Colored Stranded Graphs
    Avohou, Remi Cocou
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [6] A Renormalizable 4-Dimensional Tensor Field Theory
    Ben Geloun, Joseph
    Rivasseau, Vincent
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 318 (01) : 69 - 109
  • [7] Bosonic colored group field theory
    Ben Geloun, Joseph
    Magnen, Jacques
    Rivasseau, Vincent
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2010, 70 (04): : 1119 - 1130
  • [8] A polynomial of graphs on surfaces
    Bollobás, B
    Riordan, O
    [J]. MATHEMATISCHE ANNALEN, 2002, 323 (01) : 81 - 96
  • [9] A polynomial invariant of graphs on orientable surfaces
    Bollobás, B
    Riordan, O
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2001, 83 : 513 - 531
  • [10] Bollobas B., 1998, MODERN GRAPH THEORY