Effect of deposited passivation materials and doping on recombination at III-V surfaces

被引:0
|
作者
Kumar, Niranjana Mohan [1 ]
Chikhalkar, Abhinav [1 ]
King, Richard R. [1 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
来源
2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC) | 2019年
关键词
III-V; passivation; surface recombination velocity; interface states; Al2O3; amorphous silicon; CARRIER LIFETIME; LAYER;
D O I
10.1109/pvsc40753.2019.8980913
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Passivation of dangling bonds at surfaces and interfaces is an essential feature of high-efficiency solar cells. The high recombination activity of surface states in III-V semiconductors typically requires epitaxial growth of high-bandgap layers to suppress interface recombination. Surface recombination in III-Vs can be reduced by solution deposition of sulfides, however, the resulting passivation can degrade over time, and surface roughness caused by the passivation can degrade cell performance. In this work, the effects of different passivation materials and techniques, such as atomic layer deposition (ALD) and plasma enhanced chemical vapor deposition (PECVD), on GaAs and InP surfaces are analyzed by direct measurement of the minority-carrier lifetime by time-resolved photoluminescence (TRPL). Recombination parameters due to passivation of surface states are characterized for Al2O3, amorphous silicon (a-Si) and sulfide interfaces on n-type, intrinsic, and p-type GaAs and InP substrates. Al2O3 passivation of n-GaAs has shown 1.35 ns improvement in measured lifetime, while a-Si passivation shows a slight improvement in passivation for n-type GaAs and p-type InP.
引用
收藏
页码:1039 / 1043
页数:5
相关论文
共 50 条
  • [1] PASSIVATION OF APPARATUSES WITH III-V MATERIALS
    ALNOT, P
    VIDE-SCIENCE TECHNIQUE ET APPLICATIONS, 1990, 45 (251): : 51 - 56
  • [2] In situ cleaning/passivation of surfaces for contact technology on III-V materials
    Rodriguez, Philippe
    Toselli, Laura
    Ghegin, Elodie
    Nemouchi, Fabrice
    Rochat, Nevine
    Martinez, Eugenie
    2015 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE AND 2015 IEEE MATERIALS FOR ADVANCED METALLIZATION CONFERENCE (IITC/MAM), 2015, : 107 - 109
  • [3] Chalcogenide passivation of III-V semiconductor surfaces
    Bessolov, VN
    Lebedev, MV
    SEMICONDUCTORS, 1998, 32 (11) : 1141 - 1156
  • [4] Passivation of III-V surfaces with crystalline oxidation
    Laukkanen, P.
    Punkkinen, M. P. J.
    Kuzmin, M.
    Kokko, K.
    Lang, J.
    Wallace, R. M.
    APPLIED PHYSICS REVIEWS, 2021, 8 (01)
  • [5] Carbon doping in III-V materials
    Abernathy, CR
    PROCEEDINGS OF THE TWENTY-FOURTH STATE-OF-THE-ART-PROGRAM ON COMPOUND SEMICONDUCTORS, 1996, 96 (02): : 1 - 18
  • [6] AMORPHOUS PHOSPHORUS AND POLYPHOSPHIDES FOR THE PASSIVATION OF III-V SURFACES
    OLEGO, DJ
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (08) : C348 - C348
  • [7] Reactivity and control of III-V surfaces for passivation and Schottky barrier formation
    Bruno, G
    APPLIED SURFACE SCIENCE, 2004, 235 (03) : 239 - 248
  • [8] STUDY OF THE INTERACTION OF PLASMAS WITH III-V SEMICONDUCTOR SURFACES, APPLICATION TO PASSIVATION
    FRIEDEL, P
    GOURRIER, S
    THEETEN, JB
    ARNOULT, D
    TAILLEPIED, M
    ERMAN, M
    SURFACE SCIENCE, 1986, 168 (1-3) : 635 - 644
  • [9] PASSIVATION OF III-V COMPOUND SEMICONDUCTORS
    VIKTOROVITCH, P
    REVUE DE PHYSIQUE APPLIQUEE, 1990, 25 (09): : 895 - 914
  • [10] Chemical Passivation of III-V Semiconductors
    Kunitsyna, Ekaterina
    L'vova, Tatiana
    WOMEN IN PHYSICS, 2013, 1517 : 219 - 219