Direction of Arrival Estimation in Linear Arrays With Intersubarray Displacement Errors Using Sparse Bayesian Inference

被引:1
|
作者
Yang, Kunde [1 ,2 ]
Zhang, Ying [1 ,2 ]
Lei, Zhixiong [3 ]
Duan, Rui [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Shaanxi, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Ocean Acoust & Sensing, Xian 710072, Shaanxi, Peoples R China
[3] CETC Key Lab Avion Informat Syst Technol, Chengdu 610036, Sichuan, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
DOA estimation; intersubarray displacement errors; sparse Bayesian inference; variational inference; STABLE SIGNAL RECOVERY;
D O I
10.1109/ACCESS.2018.2878786
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear arrays that are composed of multiple well-calibrated subarrays are widely used to improve the angular resolution in array signal processing. However, intersubarray displacement errors (IDEs) that are ubiquitous in practical applications and degrade the performance of the direction of arrival (DOA) estimation. To address this problem, we build a DOA estimation model that considers manifold mismatch due to the IDEs. The model is solved in the framework of sparse Bayesian inference with the variational inference methodology. The root-mean-square-errors of the DOA estimates of the proposed method are smaller in comparison with the sparsity-cognizant total least-squares approach. The improved method is applied to partially calibrate a virtual linear array that is constructed via the extended towed array measurement method in the case of velocity mismatch. We assume that the IDEs of a virtual linear array lead to a biased DOA estimate. Simulations and experimental results demonstrate the validity of the proposed method.
引用
收藏
页码:67235 / 67243
页数:9
相关论文
共 50 条
  • [1] Calibration of Intersubarray Displacement Errors based on Sparse Bayesian Inference
    Lei, Zhixiong
    Shi, Yang
    Yang, Kunde
    Ma, Yuangliang
    OCEANS 2016 MTS/IEEE MONTEREY, 2016,
  • [2] Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference
    Yang, Zai
    Xie, Lihua
    Zhang, Cishen
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (01) : 38 - 43
  • [3] Direction of Arrival Estimation Using Sparse Nested Arrays With Coprime Displacement
    Li, Jianfeng
    He, Yi
    Ma, Penghui
    Zhang, Xiaofei
    Wu, Qihui
    IEEE SENSORS JOURNAL, 2021, 21 (04) : 5282 - 5291
  • [4] Robust Variational Bayesian Inference for Direction-of-Arrival Estimation With Sparse Array
    Liu, Ying
    Zhang, Zongyu
    Zhou, Chengwei
    Yan, Chenggang
    Shi, Zhiguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8591 - 8602
  • [5] Direction-of-Arrival Estimation Based on Variational Bayesian Inference Under Model Errors
    Wang, Can
    Guo, Kun
    Zhang, Jiarong
    Fu, Xiaoying
    Liu, Hai
    Remote Sensing, 2025, 17 (07)
  • [6] Direction of arrival estimation for sparse arrays with gain-phase errors in nonuniform noise environment
    Zhang, Yule
    Zhou, Hao
    Shi, Junpeng
    Zheng, Guimei
    Hu, Guoping
    Song, Yuwei
    Zhang, Fei
    SIGNAL PROCESSING, 2025, 233
  • [7] Sparse nested linear array for direction of arrival estimation
    Li, Zheng
    Zhang, Xiaofei
    Gong, Pan
    Wang, Cheng
    SIGNAL PROCESSING, 2020, 169
  • [8] A Sparse-Array Design Method Using Q Uniform Linear Arrays for Direction-of-Arrival Estimation
    Zhang, Jin
    Xu, Haiyun
    Ba, Bin
    Mei, Fengtong
    SENSORS, 2023, 23 (22)
  • [9] A Reiterative Superresolution Approach for Direction of Arrival Estimation with Sparse Arrays
    Alqadah, Hatim F.
    Scholnik, Dan P.
    2018 IEEE RADAR CONFERENCE (RADARCONF18), 2018, : 559 - 563
  • [10] Joint Estimation of Direction-of-Arrival and Distance for Arrays with Directional Sensors based on Sparse Bayesian Learning
    Wang, Pengyu
    Xiong, Feifei
    Ye, Zhongfu
    Feng, Jinwei
    INTERSPEECH 2022, 2022, : 871 - 875