Interfacial engineering of melamine sponges using hydrophobic TiO2 nanoparticles for effective oil/water separation

被引:58
作者
Cho, Er-Chieh [1 ]
Chang-Jian, Cai-Wan [2 ]
Hsiao, Yu-Sheng [3 ]
Lee, Kuen-Chan [4 ]
Huang, Jen-Hsien [5 ]
机构
[1] Taipei Med Univ, Sch Pharm, Dept Clin Pharm, Coll Pharm, 250 Wuxing St, Taipei 110, Taiwan
[2] I Shou Univ, Dept Mech & Automat Engn, 1,Sec 1,Syuecheng Rd, Kaohsiung 84001, Taiwan
[3] Ming Chi Univ Technol, Dept Mat Engn, 84 Gungjuan Rd, New Taipei, Taiwan
[4] Natl Taipei Univ Educ, Dept Sci Educ, 134,Sec 2,Heping E Rd, Taipei 106, Taiwan
[5] CPC Corp, Green Technol Res Inst, Dept Green Mat Technol, 2 Zuonan Rd, Kaohsiung 81126, Taiwan
关键词
Oil absorbent; Superhydrophobic; Superoleophilic; Separation; Interfacial modification; CARBON NANOTUBE SPONGES; HIGHLY-EFFICIENT; GRAPHENE OXIDE; TRIFLUOROACETIC-ACID; ORGANIC-SOLVENTS; REMOVAL; SURFACE; WATER; ADSORPTION; AEROGELS;
D O I
10.1016/j.jtice.2016.08.002
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this study, the surface modified TiO2 nanoparticles have been synthesized with oleic acid and trifiuoroacetic acid (TFAA) as surfactants. The as-prepared TiO2 nanoparticles reveal small particle size with narrow distribution, excellent dispersibility and high hydrophobicity. By interfacial modifying the melamine sponge with the hydrophobic TiO2 nanoparticle, the wettability of the modified sponge can be tailored to be superhydrophobic to water while superoleophilic to oils. Combining with the porous structure of melamine sponge and the excellent hydrophobicity of the coated TiO2, the modified sponge exhibits large absorption capacity (up to 88.1 g/g for chloroform), good selectivity and high recyclability for a wide range of oils and organic solvents. The results indicate that the TiO2 modified sponges may potentially be useful as next-generation oil adsorbent materials. (C) 2016 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:476 / 483
页数:8
相关论文
共 37 条
[1]   Aerostat Sampling of PCDD/PCDF Emissions from the Gulf Oil Spill In Situ Burns [J].
Aurell, Johanna ;
Gullett, Brian K. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (24) :9431-9437
[2]   Characterization of reduced graphene oxide supported mesoporous Fe2O3/TiO2 nanoparticles and adsorption of As(III) and As(V) from potable water [J].
Babu, Cadiam Mohan ;
Vinodh, Rajangam ;
Sundaravel, Balachandran ;
Abidov, Aziz ;
Peng, Mei Mei ;
Cha, Wang Seog ;
Jang, Hyun-Tae .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2016, 62 :199-208
[3]   Infrared spectroscopy of proteins [J].
Barth, Andreas .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2007, 1767 (09) :1073-1101
[4]   Biodegradation of Crude Oil from the BP Oil Spill in the Marsh Sediments of Southeast Louisiana, USA [J].
Boopathy, Raj ;
Shields, Sara ;
Nunna, Siva .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2012, 167 (06) :1560-1568
[5]   Improved mechanical oil spill recovery using an optimized geometry for the skimmer surface [J].
Broje, Victoria ;
Keller, Arturo A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (24) :7914-7918
[6]   Highly photoactive anatase nanoparticles obtained using trifluoroacetic acid as an electron scavenger and morphological control agent [J].
Calatayud, David G. ;
Jardiel, Teresa ;
Peiteado, Marco ;
Fernandez Rodriguez, Cristina ;
Espino Estevez, M. Rocio ;
Dona Rodriguez, Jose M. ;
Palomares, Francisco J. ;
Rubio, Fausto ;
Fernandez-Hevia, Daniel ;
Caballero, Amador C. .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (45) :14358-14367
[7]   Wettability of porous surfaces. [J].
Cassie, ABD ;
Baxter, S .
TRANSACTIONS OF THE FARADAY SOCIETY, 1944, 40 :0546-0550
[8]   Few-layer graphene based sponge as a highly efficient, recyclable and selective sorbent for organic solvents and oils [J].
Cho, Er-Chieh ;
Hsiao, Yu-Sheng ;
Lee, Kuen-Chan ;
Huang, Jen-Hsien .
RSC ADVANCES, 2015, 5 (66) :53741-53748
[9]   RELATIONSHIPS BETWEEN THE CARBON-OXYGEN STRETCHING FREQUENCIES OF CARBOXYLATO COMPLEXES AND THE TYPE OF CARBOXYLATE COORDINATION [J].
DEACON, GB ;
PHILLIPS, RJ .
COORDINATION CHEMISTRY REVIEWS, 1980, 33 (03) :227-250
[10]   Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water [J].
Dong, Xiaochen ;
Chen, Jun ;
Ma, Yanwen ;
Wang, Jing ;
Chan-Park, Mary B. ;
Liu, Xiangmei ;
Wang, Lianhui ;
Huang, Wei ;
Chen, Peng .
CHEMICAL COMMUNICATIONS, 2012, 48 (86) :10660-10662