Global existence and uniqueness for the magnetic Hartree equation

被引:4
作者
Cao, Pei [1 ]
机构
[1] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
Global existence; Uniqueness; Magnetic potential; STRICHARTZ;
D O I
10.1007/s00028-011-0112-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider uy(t) = Ji + 1/vertical bar x vertical bar * vertical bar u vertical bar(2)u (x,t) is an element of R-N X R. Under appropriate assumptions, we can establish the local and global existence and uniqueness of the solution of the corresponding Cauchy problem that does not rely on Strichartz estimates.
引用
收藏
页码:811 / 825
页数:15
相关论文
共 15 条
[1]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[2]  
Cazenave T., 2003, Courant Lecture Notes in Mathematics
[3]   GLOBAL EXISTENCE OF SOLUTIONS TO CAUCHY-PROBLEM FOR TIME-DEPENDENT HARTREE EQUATIONS [J].
CHADAM, JM ;
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1975, 16 (05) :1122-1130
[4]   Strichartz and smoothing estimates for dispersive equations with magnetic potentials [J].
D'Ancona, Piero ;
Fanelli, Luca .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (06) :1082-1112
[5]   Endpoint Strichartz estimates for the magnetic Schrodinger equation [J].
D'Ancona, Piero ;
Fanelli, Luca ;
Vega, Luis ;
Visciglia, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3227-3240
[6]   Smoothing estimates for the Schrodinger equation with unbounded potentials [J].
D'Ancona, Piero ;
Fanelli, Luca .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (12) :4552-4567
[7]  
Erdogan MB, 2008, J EUR MATH SOC, V10, P507
[8]   Magnetic virial identities, weak dispersion and Strichartz inequalities [J].
Fanelli, Luca ;
Vega, Luis .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :249-278
[9]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[10]  
Gulisashvili A, 1996, AM J MATH, V118, P1215