Generation and control of multiple solitons under the influence of parameters

被引:111
作者
Liu, Xiaoyan [1 ,2 ]
Triki, Houria [3 ]
Zhou, Qin [4 ]
Mirzazadeh, Mohammad [5 ]
Liu, Wenjun [1 ,2 ]
Biswas, Anjan [6 ,7 ]
Belic, Milivoj [8 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, POB 12, Annaba 23000, Algeria
[4] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Hubei, Peoples R China
[5] Univ Guilan, Dept Engn Sci, Fac Engn & Technol, Rudsar Vajargah 4489163157, Iran
[6] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[7] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[8] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
基金
中国国家自然科学基金;
关键词
Optical solitons; Soliton interactions; Hirota's bilinear method; Soliton transmission; NONLINEAR SCHRODINGER-EQUATION; INTEGRABLE EQUATION; KDV EQUATION; OPTICAL-PROPERTIES; HIERARCHY; BREATHER; SYSTEMS; WAVES; LUMP;
D O I
10.1007/s11071-018-4556-8
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, the analytic three-soliton solution for a high-order nonlinear Schrodinger equation is obtained by the Hirota's bilinear method. The transmission characteristics of three solitons are discussed. By selecting relevant parameters, soliton interactions are presented, and the method of generating new solitons is suggested. The influences of corresponding parameters on soliton transmission and interactions are analyzed. Results of this paper are helpful for enriching the soliton theory and studying the signal routing system.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 48 条
[1]  
Agrawal GP., 2006, NONLINEAR FIBER OPTI
[2]   Infinite hierarchy of nonlinear Schrodinger equations and their solutions [J].
Ankiewicz, A. ;
Kedziora, D. J. ;
Chowdury, A. ;
Bandelow, U. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2016, 93 (01)
[3]   Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity [J].
Artigas, D ;
Torner, L ;
Torres, JP ;
Akhmediev, NN .
OPTICS COMMUNICATIONS, 1997, 143 (4-6) :322-328
[4]   Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg-de Vries equation [J].
Chen, Junchao ;
Zhu, Shundong .
APPLIED MATHEMATICS LETTERS, 2017, 73 :136-142
[5]   Moving breathers and breather-to-soliton conversions for the Hirota equation [J].
Chowdury, A. ;
Ankiewicz, A. ;
Akhmediev, N. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2180)
[6]   Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrodinger hierarchy [J].
Chowdury, A. ;
Kedziora, D. J. ;
Ankiewicz, A. ;
Akhmediev, N. .
PHYSICAL REVIEW E, 2015, 91 (03)
[7]   EXACT-SOLUTIONS OF THE MULTIDIMENSIONAL DERIVATIVE NONLINEAR SCHRODINGER-EQUATION FOR MANY-BODY SYSTEMS NEAR CRITICALITY [J].
CLARKSON, PA ;
TUSZYNSKI, JA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (19) :4269-4288
[8]   Generalised (2+1)-dimensional Super MKdV Hierarchy for Integrable Systems in Soliton Theory [J].
Dong, Huanhe ;
Zhao, Kun ;
Yang, Hongwei ;
Li, Yuqing .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (03) :256-272
[9]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .2. NORMAL DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (04) :171-172
[10]   EXACT ENVELOPE-SOLITON SOLUTIONS OF A NONLINEAR WAVE-EQUATION [J].
HIROTA, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1973, 14 (07) :805-809