Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

被引:52
作者
Fu, Kaiyu [1 ]
Bohn, Paul W. [1 ,2 ]
机构
[1] Univ Notre Dame, Dept Chem & Biochem, Notre Dame, IN 46556 USA
[2] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
SOLID-STATE NANOPORES; SURFACE-PLASMON RESONANCE; LOW IONIC-STRENGTH; MODE WAVE-GUIDES; ANALYTICAL-CHEMISTRY; ELECTROKINETIC FLOW; GRAPHENE NANOPORES; NANOFLUIDIC DIODE; NANOHOLE ARRAYS; NANOSPHERE LITHOGRAPHY;
D O I
10.1021/acscentsci.7b00576
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present. GRAPHICS
引用
收藏
页码:20 / 29
页数:10
相关论文
共 136 条
  • [1] Biomimetic glass nanopores employing aptamer gates responsive to a small molecule
    Abelow, Alexis E.
    Schepelina, Olga
    White, Ryan J.
    Vallee-Belisle, Alexis
    Plaxco, Kevin W.
    Zharov, Ilya
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (42) : 7984 - 7986
  • [2] A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties
    Ali, Mubarak
    Ramirez, Patricio
    Mafe, Salvador
    Neumann, Reinhard
    Ensinger, Wolfgang
    [J]. ACS NANO, 2009, 3 (03) : 603 - 608
  • [3] Nanoelectrodes, nanoelectrode arrays and their applications
    Arrigan, DWM
    [J]. ANALYST, 2004, 129 (12) : 1157 - 1165
  • [4] Recognizing a single base in an individual DNA strand:: A step toward DNA sequencing in nanopores
    Ashkenasy, N
    Sánchez-Quesada, J
    Bayley, H
    Ghadiri, MR
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (09) : 1401 - 1404
  • [5] Electrochemistry at nanoporous interfaces: new opportunity for electrocatalysis
    Bae, Je Hyun
    Han, Ji-Hyung
    Chung, Taek Dong
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (02) : 448 - 463
  • [6] DIGITAL-SIMULATION OF THE MEASURED ELECTROCHEMICAL RESPONSE OF REVERSIBLE REDOX COUPLES AT MICROELECTRODE ARRAYS - CONSEQUENCES ARISING FROM CLOSELY SPACED ULTRAMICROELECTRODES
    BARD, AJ
    CRAYSTON, JA
    KITTLESEN, GP
    SHEA, TV
    WRIGHTON, MS
    [J]. ANALYTICAL CHEMISTRY, 1986, 58 (11) : 2321 - 2331
  • [7] COUNTING POLYMERS MOVING THROUGH A SINGLE-ION CHANNEL
    BEZRUKOV, SM
    VODYANOY, I
    PARSEGIAN, VA
    [J]. NATURE, 1994, 370 (6487) : 279 - 281
  • [8] Electrochemistry of Single Nanodomains Revealed by Three-Dimensional Holographic Microscopy
    Brasiliense, Vitor
    Berto, Pascal
    Combellas, Catherine
    Tessier, Gilles
    Kanoufi, Frederic
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (09) : 2049 - 2057
  • [9] BULL BS, 1965, AM J CLIN PATHOL, V44, P678
  • [10] Single Molecule Electrochemical Detection in Aqueous Solutions and Ionic Liquids
    Byers, Joshua C.
    Nadappuram, Binoy Paulose
    Perry, David
    McKelvey, Kim
    Colburn, Alex W.
    Unwin, Patrick R.
    [J]. ANALYTICAL CHEMISTRY, 2015, 87 (20) : 10450 - 10456