Recognizing harmful algal bloom based on remote sensing reflectance band ratio

被引:20
|
作者
Bresciani, Mariano [1 ,2 ]
Giardino, Claudia [1 ]
Bartoli, Marco [2 ]
Tavernini, Silvia [2 ]
Bolpagni, Rossano [2 ]
Nizzoli, Daniele [2 ]
机构
[1] CNR, IREA, Opt Remote Sensing Grp, I-20133 Milan, Italy
[2] Univ Parma, Dept Environm Sci, I-43100 Parma, Italy
来源
关键词
remote sensing reflectance; MERIS; harmful algal bloom; lake; CYANOBACTERIAL BLOOMS; SATELLITE; PHYTOPLANKTON; CHLOROPHYLL; SOUTH; LAKES; 6S;
D O I
10.1117/1.3630218
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We present a band ratio algorithm based on remote sensing reflectance (RRS) data to detect an algal bloom composed of cyanobacteria (Planktothrix spp.) and chrysophytes in Lake Idro, a small meso-eutrophic lake situated in the subalpine region (northern Italy). The bloom started around the first week of September 2010 and persisted for about 1 month, with highest mean chlorophyll-a concentrations (17.5 +/- 1.6 mgm(-3)) and phytoplankton cellular density (7,250,000 cell . l(-1)) measured on September 14, 2010. RRS data obtained from in situ measurements were first investigated to select the diagnostic wavelengths (i.e., 560 and 620 nm) of both phycoerythrin (present in the Planktothrix spp.) and other pigments (e. g., fucoxanthin, common to several species of chrysophyte). Testing the algorithm on RRS data derived from atmospherically corrected image data showed the ability of the medium resolution imaging spectrometer (MERIS) to detect the bloom also. The results demonstrate that a combination of in situ and MERIS data is a valuable tool to monitor the extent and duration of phytoplankton blooms. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3630218]
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A Remote Sensing and Machine Learning-Based Approach to Forecast the Onset of Harmful Algal Bloom
    Izadi, Moein
    Sultan, Mohamed
    El Kadiri, Racha
    Ghannadi, Amin
    Abdelmohsen, Karem
    REMOTE SENSING, 2021, 13 (19)
  • [2] Remote sensing oceanography of a harmful algal bloom off the coast of southeastern Vietnam
    Tang, DL
    Kawamura, H
    Doan-Nhu, H
    Takahashi, W
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2004, 109 (C3)
  • [3] Remote sensing of algal bloom dynamics
    Richardson, LL
    BIOSCIENCE, 1996, 46 (07) : 492 - 501
  • [4] A refined deep-learning-based algorithm for harmful-algal-bloom remote-sensing recognition using Noctiluca scintillans algal bloom as an example
    Liu, Rongjie
    Cui, Binge
    Dong, Wenwen
    Fang, Xi
    Xiao, Yanfang
    Zhao, Xin
    Cui, Tingwei
    Ma, Yi
    Wang, Quanbin
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 467
  • [5] REMOTE SENSING EVIDENCE FOR THE HARMFUL ALGAL BLOOM EXPLANATION OF THE ECOLOGICAL SITUATION IN KAMCHATKA IN AUTUMN OF 2020
    Dubrovin, Ivan
    Ivanov, Anton
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6764 - 6767
  • [6] A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective
    Khan, Rabia Munsaf
    Salehi, Bahram
    Mahdianpari, Masoud
    Mohammadimanesh, Fariba
    Mountrakis, Giorgos
    Quackenbush, Lindi J.
    REMOTE SENSING, 2021, 13 (21)
  • [7] Ensemble-Based Systems to Monitor Algal Bloom With Remote Sensing
    El-Alem, Anas
    Chokmani, Karem
    Laurion, Isabelle
    El-Adlouni, Salah E.
    Raymond, Sebastien
    Ratte-Fortin, Claudie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (10): : 7955 - 7971
  • [8] Laser remote sensing of an algal bloom in a freshwater reservoir
    Grishin, M. Ya
    Lednev, V. N.
    Pershin, S. M.
    Bunkin, A. F.
    Kobylyanskiy, V. V.
    Ermakov, S. A.
    Kapustin, I. A.
    Molkov, A. A.
    LASER PHYSICS, 2016, 26 (12)
  • [9] A review on remote-sensing-based harmful cyanobacterial bloom monitoring services
    Janatian, Nasim
    Raudsepp, Urmas
    Broomandi, Parya
    Fickas, Kate
    Olli, Kalle
    Heimovaara, Timo
    Mannik, Aarne
    Uiboupin, Rivo
    Pahlevan, Nima
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2025, 37
  • [10] Chromaticity-Based Discrimination of Algal Bloom from Inland and Coastal Waters Using In Situ Hyperspectral Remote Sensing Reflectance
    Zhao, Dongzhi
    Luo, Qinshun
    Qiu, Zhongfeng
    WATER, 2024, 16 (16)