Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster

被引:151
作者
Miyahisa, I [1 ]
Kaneko, M [1 ]
Funa, N [1 ]
Kawasaki, H [1 ]
Kojima, H [1 ]
Ohnishi, Y [1 ]
Horinouchi, S [1 ]
机构
[1] Tokai Univ, Grad Sch Agr & Life Sci, Dept Biotechnol, Bunkyo Ku, Tokyo 1138657, Japan
关键词
D O I
10.1007/s00253-005-1916-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
For the fermentative production of plant-specific flavanones (naringenin, pinocembrin) by Escherichia coli, a plasmid was constructed which carried an artificial biosynthetic gene cluster, including PAL encoding a phenylalanine ammonia-lyase from a yeast, ScCCL encoding a cinnamate/coumarate:CoA ligase from the actinomycete Streptomyces coelicolor A3(2), CHS encoding a chalcone synthase from a licorice plant and CHI encoding a chalcone isomerase from the Pueraria plant. The recombinant E. coli cells produced (2,S)-naringenin from tyrosine and (2S)-pinocembrin from phenylalanine. When the two subunit genes of acetyl-CoA carboxylase from Corynebacterium glutamicum were expressed under the control of the T7 promoter and the ribosome-binding sequence in the recombinant E. coli cells, the flavanone yields were greatly increased, probably because enhanced expression of acetylCoA carboxylase increased a pool of malonyl-CoA that was available for flavanone synthesis. Under cultural conditions where E. coli at a cell density of 50 g/l was incubated in the presence of 3 mM tyrosine or phenylalanine, the yields of naringenin and pinocembrin reached about 60 mg/l. The fermentative production of flavanones in E. coli is the first step in the construction of a library of flavonoid compounds and un-natural flavonoids in bacteria.
引用
收藏
页码:498 / 504
页数:7
相关论文
共 28 条
[1]  
BEDNAR RA, 1988, J BIOL CHEM, V263, P9582
[2]   Variation in the ability of the maize Lc regulatory gene to upregulate flavonoid biosynthesis in heterologous systems [J].
Bradley, JM ;
Deroles, SC ;
Boase, MR ;
Bloor, S ;
Swinny, E ;
Davies, KM .
PLANT SCIENCE, 1999, 140 (01) :31-39
[3]  
Bravo L, 1998, NUTR REV, V56, P317, DOI 10.1111/j.1753-4887.1998.tb01670.x
[4]   Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli [J].
Davis, MS ;
Solbiati, J ;
Cronan, JE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28593-28598
[5]   Inhibition of Escherichia coli acetyl coenzyme A carboxylase by acyl-acyl carrier protein [J].
Davis, MS ;
Cronan, JE .
JOURNAL OF BACTERIOLOGY, 2001, 183 (04) :1499-1503
[6]   Flavonoids and isoflavonoids - a gold mine for metabolic engineering [J].
Dixon, RA ;
Steele, CL .
TRENDS IN PLANT SCIENCE, 1999, 4 (10) :394-400
[7]   Eating soya improves human memory [J].
File, SE ;
Jarrett, N ;
Fluck, E ;
Duffy, R ;
Casey, K ;
Wiseman, H .
PSYCHOPHARMACOLOGY, 2001, 157 (04) :430-436
[8]   Engineering secondary metabolism in maize cells by ectopic expression of transcription factors [J].
Grotewold, E ;
Chamberlin, M ;
Snook, M ;
Siame, B ;
Butler, L ;
Swenson, J ;
Maddock, S ;
Clair, GS ;
Bowen, B .
PLANT CELL, 1998, 10 (05) :721-740
[9]   CINNAMATE 4-HYDROXYLASE FROM CATHARANTHUS-ROSEUS, AND A STRATEGY FOR THE FUNCTIONAL EXPRESSION OF PLANT CYTOCHROME-P-450 PROTEINS AS TRANSLATIONAL FUSIONS WITH P-450 REDUCTASE IN ESCHERICHIA-COLI [J].
HOTZE, M ;
SCHRODER, G ;
SCHRODER, J .
FEBS LETTERS, 1995, 374 (03) :345-350
[10]   Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster [J].
Hwang, EI ;
Kaneko, M ;
Ohnishi, Y ;
Horinouchi, S .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (05) :2699-2706