Generalized Bivariate Baskakov Durrmeyer Operators and Associated GBS Operators

被引:0
作者
Rani, Mamta [1 ]
Rao, Nadeem [1 ]
Malik, Pradeep [1 ]
机构
[1] Shree Guru Gobind Singh Tricentenary Univ, Dept Math, Gurugram 122505, Haryana, India
关键词
Baskakov operators; Peetre?s K-functional; Mixed-modulus of continuity; B?gel functions; APPROXIMATION;
D O I
10.2298/FIL2205539R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present research article, we construct a new sequence of Generalized Bivariate Baskakov Durrmeyer Operators. We investigate rate of convergence and the order of approximation with the aid of modulus of continuity in terms of well known Peetre???s K-functional, Voronovskaja type theorems and Lipschitz maximal functions. Further, graphical analysis is discussed. Moreover, we study the approximation properties of the operators in B??gel-spaces with the aid of mixed-modulus of continuity.
引用
收藏
页码:1539 / 1555
页数:17
相关论文
共 25 条
  • [1] Degree of Approximation for Bivariate Generalized Bernstein Type Operators
    Acar, Tuncer
    Kajla, Arun
    [J]. RESULTS IN MATHEMATICS, 2018, 73 (02)
  • [2] Approximation by Bivariate (p, q)-Bernstein-Kantorovich Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A2): : 655 - 662
  • [3] Acu AM, 2019, RACSAM REV R ACAD A, V113, P2715, DOI 10.1007/s13398-019-00655-y
  • [4] Aral A, 2019, MATH COMMUN, V24, P119
  • [5] Bernstein S.N., 1912, Series, VXIII, P1
  • [6] Bogel K, 1934, J REINE ANGEW MATH, V170, P197
  • [7] Bogel K., 1935, Jahresber. Dtsch. Math.Ver., V65, P45
  • [8] Approximation of functions by a new family of generalized Bernstein operators
    Chen, Xiaoyan
    Tan, Jieqing
    Liu, Zhi
    Xie, Jin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) : 244 - 261
  • [9] Gadẑiev A.D., 1980, IZV AKAD NAUK AZERBA, V4, P32
  • [10] Gadziev A.D., 1995, Convergence of the Sequences of Linear Positive Operators