High-Performance PZT-Based Stretchable Piezoelectric Nanogenerator

被引:169
作者
Niu, Xushi [1 ]
Jia, Wei [2 ]
Qian, Shuo [1 ]
Zhu, Jie [1 ]
Zhang, Jing [1 ]
Hou, Xiaojuan [1 ]
Mu, Jiliang [1 ]
Geng, Wenping [1 ]
Cho, Jundong [1 ,3 ]
He, Jian [1 ]
Chou, Xiujian [1 ]
机构
[1] North Univ China, Sci & Technol Elect Test & Measurement Lab, Taiyuan 030051, Shanxi, Peoples R China
[2] Shanghai Inst Space Power Source, Shanghai 200245, Peoples R China
[3] Sungkyunkwan Univ, Sch Informat & Commun Engn, Suwon 440746, South Korea
来源
ACS SUSTAINABLE CHEMISTRY & ENGINEERING | 2019年 / 7卷 / 01期
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Piezoelectric composite; Stretchable nanogenerator; Energy harvesting; PZT; STRAIN SENSOR; NANOCOMPOSITE; PAPER;
D O I
10.1021/acssuschemeng.8b04627
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Stretchable piezoelectric nanogenerators are highly desirable for power supply of flexible electronics. Piezoelectric composite material is the most effective strategy to render piezoelectric nanogenerators stretchable. However, the generated output performance is unsatisfactory due to the low piezoelectric phase proportion. Here we demonstrate a high-performance Pb(Zr0.52Ti0.48)O-3 (PZT)-based stretchable piezoelectric nanogenerator (HSPG). The proposed HSPG exhibits excellent output performance with a power density of similar to 81.25 mu W/cm(3), dozens of times higher than previously reported results. Mixing technique, instead of conventional stirring technology, is used to incorporate PZT particles into solid silicone rubber. The filler distribution homogeneity in matrix is thus remarkably improved, allowing higher filler composition. The PZT proportion in composite can be increased to 92 wt % with satisfactory stretchability of 30%. On the basis of the excellent electrical and mechanical properties, the proposed HSPG can be attached to human body to harvest body kinetic energy with multiple deformation modes. The obtained energy can be used to operate commercial electronics or be stored into a capacitor. Therefore, our HSPG has great potential application in powering flexible electronics.
引用
收藏
页码:979 / 985
页数:13
相关论文
共 35 条
[1]   Exalted Electric Output via Piezoelectric-Triboelectric Coupling/Sustainable Butterfly Wing Structure Type Multiunit Hybrid Nanogenerator [J].
Alluri, Nagamalleswara Rao ;
Chandrasekhar, Arunkumar ;
Kim, Sang-Jae .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (02) :1919-1933
[2]   Sustainable Biomechanical Energy Scavenger toward Self-Reliant Kids' Interactive Battery-Free Smart Puzzle [J].
Chandrasekhar, Arunkumar ;
Alluri, Nagamalleswara Rao ;
Vivekananthan, Venkateswaran ;
Park, Jung Hwan ;
Kim, Sang-Jae .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (08) :7310-7316
[3]   Energy Migration Upconversion in Ce(III)-Doped Heterogeneous Core-Shell-Shell Nanoparticles [J].
Chen, Xian ;
Jin, Limin ;
Sun, Tianying ;
Kong, Wei ;
Yu, Siu Fung ;
Wang, Feng .
SMALL, 2017, 13 (43)
[4]   A Stretchable and Transparent Nanocomposite Nanogenerator for Self-Powered Physiological Monitoring [J].
Chen, Xiaoliang ;
Parida, Kaushik ;
Wang, Jiangxin ;
Xiong, Jiaqing ;
Lin, Meng-Fang ;
Shao, Jinyou ;
Lee, Pooi See .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (48) :42200-42209
[5]   A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling [J].
Chen, Xiaoliang ;
Tian, Hongmiao ;
Li, Xiangming ;
Shao, Jinyou ;
Ding, Yucheng ;
An, Ningli ;
Zhou, Yaopei .
NANOSCALE, 2015, 7 (27) :11536-11544
[6]   A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring [J].
Cheng, Yin ;
Lu, Xin ;
Chan, Kwok Hoe ;
Wang, Ranran ;
Cao, Zherui ;
Sun, Jing ;
Ho, Ghim Wei .
NANO ENERGY, 2017, 41 :511-518
[7]   Organic/Inorganic Hybrid Stretchable Piezoelectric Nanogenerators for Self-Powered Wearable Electronics [J].
Dahiya, Abhishek S. ;
Morini, Francois ;
Boubenia, Sarah ;
Nadaud, Kevin ;
Alquier, Daniel ;
Poulin-Vittrant, Guylaine .
ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (02)
[8]   Flexible Nanogenerators for Energy Harvesting and Self-Powered Electronics [J].
Fan, Feng Ru ;
Tang, Wei ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2016, 28 (22) :4283-4305
[9]   Triboelectric-piezoelectric-electromagnetic hybrid nanogenerator for high-efficient vibration energy harvesting and self-powered wireless monitoring system [J].
He, Jian ;
Wen, Tao ;
Qian, Shuo ;
Zhang, Zengxing ;
Tian, Zhumei ;
Zhu, Jie ;
Mu, Jiliang ;
Hou, Xiaojuan ;
Geng, Wenping ;
Cho, Jundong ;
Han, Jianqiang ;
Chou, Xiujian ;
Xue, Chenyang .
NANO ENERGY, 2018, 43 :326-339
[10]   Self-Powered Wireless Sensor Node Enabled by an Aerosol-Deposited PZT Flexible Energy Harvester [J].
Hwang, Geon-Tae ;
Annapureddy, Venkateswarlu ;
Han, Jae Hyun ;
Joe, Daniel J. ;
Baek, Changyeon ;
Park, Dae Yong ;
Kim, Dong Hyun ;
Park, Jung Hwan ;
Jeong, Chang Kyu ;
Park, Kwi-Il ;
Choi, Jong-Jin ;
Kim, Do Kyung ;
Ryu, Jungho ;
Lee, Keon Jae .
ADVANCED ENERGY MATERIALS, 2016, 6 (13)