Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction

被引:26
|
作者
Rong, Jiashi [1 ]
Ye, Yanping [1 ]
Cao, Jian [1 ,2 ,3 ]
Liu, Xiaoyan [1 ,2 ,3 ]
Fan, Hougang [1 ,2 ,3 ]
Yang, Shuo [4 ]
Wei, Maobin [1 ,2 ,3 ]
Yang, Lili [1 ,2 ,3 ]
Yang, Jinghai [1 ,2 ,3 ]
Chen, Yanli [1 ,2 ,3 ]
机构
[1] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Changchun 130103, Peoples R China
[2] Jilin Normal Univ, Natl Demonstrat Ctr Expt Phys, Siping 136000, Peoples R China
[3] Jilin Normal Univ, Lab Preparat & Applicat Environm Friendly Mat, Minist Educ, Changchun 130103, Peoples R China
[4] Changchun Univ, Coll Sci, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
1TMoS(2); Hydrogen evolution reaction; W doped; DFT calculation; Electronic structure; Gibbs free energy; ELECTROCATALYST; MONOLAYERS; 1T-MOS2; STORAGE; METALS; DESIGN;
D O I
10.1016/j.apsusc.2021.152216
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The intrinsic electronic structure on the surface of 1T MoS2 makes the non-optimal bonding strength with hydrogen atoms, which is the key factor that the catalytic performance cannot be improved. However, modifying surface electronic structure by doped exotic atom is an effective approach to optimal the bonding strength be-tween hydrogen atoms and 1T MoS2. Herein, this work reports W doped 1T MoS2 with different concentrations by hydrothermal method. The results indicate that W-1T MoS2-15 exhibits excellent catalytic activity for hydrogen evolution reaction (HER), the catalytic activity is better than that of 2H MoS2 and pristine 1T MoS2, the lowest overpotential and tafel slope in acid electrolyte is 292 mV and 55.7 mV dec-1, respectively. Theoretical calculation results show that W-1T MoS2-2/9 has relatively much lower barrier than pristine 1T MoS2 both in Volmer reaction and Heyrovsky reaction. Therefore, W-1T MoS2-2/9 has a faster reaction kinetics for HER. In addition, introducing W atoms can trigger spontaneous electrons redistribution on the basal plane, optimize energy level, and reduce the Gibbs free energy. This study confirmed that doping of atom with similar physical and chemical properties can optimize electronic structure of 1T MoS2 on the basal plane, and effectively improve its electrocatalytic activity.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution
    Wang, Dezhi
    Zhang, Xiangyong
    Bao, Siyuan
    Zhang, Zhongting
    Fei, Hao
    Wu, Zhuangzhi
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (06) : 2681 - 2688
  • [42] Phase Engineering of W-Doped MoS2 by Magneto-Hydrothermal Synthesis for Hydrogen Evolution Reaction
    Li, Changdian
    Zhu, Lili
    Wu, Ziqiang
    Chen, Qian
    Zheng, Ruobing
    Huan, Jie
    Huang, Yanan
    Zhu, Xuebin
    Sun, Yuping
    SMALL, 2023, 19 (48)
  • [43] Activating the MoS2 Basal Planes for Electrocatalytic Hydrogen Evolution by 2H/1T' Structural Interfaces
    Zhao, Ni
    Wang, Lu
    Zhang, Zixiang
    Li, Youyong
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (45) : 42014 - 42020
  • [44] A Se-doped MoS2 nanosheet for improved hydrogen evolution reaction
    Ren, Xianpei
    Ma, Qiang
    Fan, Haibo
    Pang, Liuqing
    Zhang, Yunxia
    Yao, Yao
    Ren, Xiaodong
    Liu, Shengzhong
    CHEMICAL COMMUNICATIONS, 2015, 51 (88) : 15997 - 16000
  • [45] Observation of superconductivity in 1T′-MoS2 nanosheets
    Guo, Chenguang
    Pan, Jie
    Li, Hui
    Lin, Tianquan
    Liu, Pan
    Song, Changsheng
    Wang, Dong
    Mu, Gang
    Lai, Xiaofang
    Zhang, Hui
    Zhou, Wei
    Chen, Mingwei
    Huang, Fuqiang
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (41) : 10855 - 10860
  • [46] Transition metal doped MoS2 nanosheets for electrocatalytic hydrogen evolution reaction
    Venkatesh, P. Sundara
    Kannan, N.
    Babu, M. Ganesh
    Paulraj, G.
    Jeganathan, K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (88) : 37256 - 37263
  • [47] Tailoring Polymorphic Heterostructures of MoS2-WS2 (1T/1T, 2H/ 2H) for Efficient Hydrogen Evolution Reaction
    Seok, Hyunho
    Kim, Minjun
    Cho, Jinill
    Kim, Eungchul
    Son, Sihoon
    Kim, Keon-Woo
    Kim, Jin Kon
    Yoo, Pil J.
    Kim, Muyoung
    Kim, Hyeong-U
    Kim, Taesung
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (02) : 568 - 577
  • [48] Tailoring activation sites of metastable distorted 1T′-phase MoS2 by Ni doping for enhanced hydrogen evolution
    Mingming Liu
    Hengxu Li
    Shijie Liu
    Longlu Wang
    Lingbin Xie
    Zechao Zhuang
    Chun Sun
    Jin Wang
    Meng Tang
    Shujiang Sun
    Shujuan Liu
    Qiang Zhao
    Nano Research, 2022, 15 : 5946 - 5952
  • [49] Copper-linked 1T MoS2/Cu2O Heterostructure for Efficient Photocatalytic Hydrogen Evolution
    Yin Yage
    Wei Shuting
    Zhang Lei
    Guo Ziwang
    Huang Haihua
    Sai Shiran
    Wu Jiandong
    Xu Yanchao
    Liu Ying
    Zheng Lirong
    Fan Xiaofeng
    Cui Xiaoqiang
    CHEMICAL RESEARCH IN CHINESE UNIVERSITIES, 2020, 36 (06) : 1122 - 1127
  • [50] Growth of single-atomically dispersed Pt on 1T'-MoS2 for highly efficient electrocatalytic hydrogen evolution
    Liu, Zhongfan
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (35): : 4743 - 4745