Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction

被引:26
|
作者
Rong, Jiashi [1 ]
Ye, Yanping [1 ]
Cao, Jian [1 ,2 ,3 ]
Liu, Xiaoyan [1 ,2 ,3 ]
Fan, Hougang [1 ,2 ,3 ]
Yang, Shuo [4 ]
Wei, Maobin [1 ,2 ,3 ]
Yang, Lili [1 ,2 ,3 ]
Yang, Jinghai [1 ,2 ,3 ]
Chen, Yanli [1 ,2 ,3 ]
机构
[1] Jilin Normal Univ, Key Lab Funct Mat Phys & Chem, Minist Educ, Changchun 130103, Peoples R China
[2] Jilin Normal Univ, Natl Demonstrat Ctr Expt Phys, Siping 136000, Peoples R China
[3] Jilin Normal Univ, Lab Preparat & Applicat Environm Friendly Mat, Minist Educ, Changchun 130103, Peoples R China
[4] Changchun Univ, Coll Sci, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
1TMoS(2); Hydrogen evolution reaction; W doped; DFT calculation; Electronic structure; Gibbs free energy; ELECTROCATALYST; MONOLAYERS; 1T-MOS2; STORAGE; METALS; DESIGN;
D O I
10.1016/j.apsusc.2021.152216
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The intrinsic electronic structure on the surface of 1T MoS2 makes the non-optimal bonding strength with hydrogen atoms, which is the key factor that the catalytic performance cannot be improved. However, modifying surface electronic structure by doped exotic atom is an effective approach to optimal the bonding strength be-tween hydrogen atoms and 1T MoS2. Herein, this work reports W doped 1T MoS2 with different concentrations by hydrothermal method. The results indicate that W-1T MoS2-15 exhibits excellent catalytic activity for hydrogen evolution reaction (HER), the catalytic activity is better than that of 2H MoS2 and pristine 1T MoS2, the lowest overpotential and tafel slope in acid electrolyte is 292 mV and 55.7 mV dec-1, respectively. Theoretical calculation results show that W-1T MoS2-2/9 has relatively much lower barrier than pristine 1T MoS2 both in Volmer reaction and Heyrovsky reaction. Therefore, W-1T MoS2-2/9 has a faster reaction kinetics for HER. In addition, introducing W atoms can trigger spontaneous electrons redistribution on the basal plane, optimize energy level, and reduce the Gibbs free energy. This study confirmed that doping of atom with similar physical and chemical properties can optimize electronic structure of 1T MoS2 on the basal plane, and effectively improve its electrocatalytic activity.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction
    Rong, Jiashi
    Ye, Yanping
    Cao, Jian
    Liu, Xiaoyan
    Fan, Hougang
    Yang, Shuo
    Wei, Maobin
    Yang, Lili
    Yang, Jinghai
    Chen, Yanli
    Applied Surface Science, 2022, 579
  • [2] Synthesis of 1T′-MoS2 Nanoribbons via Thermal Evaporation for the Hydrogen Evolution Reaction
    Lu, Xue-Wei
    Zhang, Xiaoliang
    Chen, Ruxuan
    Wang, Shuwei
    Wang, Zile
    Tian, Huajun
    Zhu, Xiaoqing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2025,
  • [3] Chemical stabilization and mechanism of hydrogen evolution reaction, 1T MoS2
    Jiang, De-en
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [4] Layer by Layer Deposition of 1T′-MoS2 for the Hydrogen Evolution Reaction
    Alimohammadi, Farbod
    Yasini, Parisa
    Marshall, Tim
    Attanayake, Nuwan H.
    Borguet, Eric
    Strongin, Daniel R.
    CHEMISTRYSELECT, 2022, 7 (07):
  • [5] Fe doped 1T/2H MoS2/reduced graphene oxide for hydrogen evolution reaction
    Yao, Pengju
    Gao, Xuemin
    Xie, Fei
    Lv, Guicai
    Yang, Hui
    Snyders, Rony
    Bittencourt, Carla
    Li, Wenjiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1014
  • [6] Activating MoS2 via electronic structure modulation and phase engineering for hydrogen evolution reaction
    Han, Dongchen
    Gao, Nanxing
    Ge, Junjie
    Liu, Changpeng
    Xing, Wei
    CATALYSIS COMMUNICATIONS, 2022, 164
  • [7] Defective-MoS2/rGO heterostructures with conductive 1T phase MoS2 for efficient hydrogen evolution reaction
    Dong, Wanmeng
    Liu, Hui
    Liu, Xiaoxu
    Wang, Haoyu
    Li, Xinru
    Tian, Lejie
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (14) : 9360 - 9370
  • [8] Quasiparticle electronic structure of 1T'-MoS2 within GW approximation
    Syahroni, Ahmad
    Cahaya, Adam B.
    Majidi, Muhammad Aziz
    INTERNATIONAL CONFERENCE ON MATHEMATICS AND NATURAL SCIENCES (ICMNS), 2019, 1245
  • [9] Reaction Mechanism with Thermodynamic Structural Screening for Electrochemical Hydrogen Evolution on Monolayer 1T′ Phase MoS2
    Chen, Shiqi
    Chen, Xiaobo
    Wang, Guangjin
    Liu, Lu
    He, Qiaoqiao
    Li, Xi-Bo
    Cui, Ni
    CHEMISTRY OF MATERIALS, 2018, 30 (15) : 5404 - 5411
  • [10] Enhancing electrocatalytic hydrogen evolution via engineering unsaturated electronic structures in MoS2
    Zhou, Qingqing
    Hu, Hao
    Chen, Zhijie
    Ren, Xiao
    Ma, Ding
    CHEMICAL SCIENCE, 2025, 16 (04) : 1597 - 1616