Translational control of the cytosolic stress response by mitochondrial ribosomal protein L18

被引:60
作者
Zhang, Xingqian [1 ]
Gao, Xiangwei [1 ]
Coots, Ryan Alex [1 ,2 ]
Conn, Crystal S. [3 ]
Liu, Botao [3 ]
Qian, Shu-Bing [1 ,2 ,3 ]
机构
[1] Cornell Univ, Div Nutr Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Grad Field Nutr Sci, Ithaca, NY 14853 USA
[3] Cornell Univ, Grad Field Genet Genom & Dev, Ithaca, NY 14853 USA
基金
美国国家卫生研究院;
关键词
MESSENGER-RNA TRANSLATION; HEAT-SHOCK; SPECIALIZED RIBOSOMES; SELECTIVE TRANSLATION; INITIATION; MECHANISM; RECOVERY; KINASES; CELLS;
D O I
10.1038/nsmb.3010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In response to stress, cells attenuate global protein synthesis but permit efficient translation of mRNAs encoding heat-shock proteins (HSPs). Although decades have passed since the first description of the heat-shock response, how cells achieve translational control of HSP synthesis remains enigmatic. Here we report an unexpected role for mitochondrial ribosomal protein L18 (MRPL18) in the mammalian cytosolic stress response. MRPL18 bears a downstream CUG start codon and generates a cytosolic isoform in a stress-dependent manner. Cytosolic MRPL18 incorporates into the 80S ribosome and facilitates ribosome engagement on mRNAs selected for translation during stress. MRPL18 knockdown has minimal effects on mitochondrial function but substantially dampens cytosolic HSP expression at the level of translation. Our results uncover a hitherto-uncharacterized stress-adaptation mechanism in mammalian cells, which involves formation of a 'hybrid' ribosome responsible for translational regulation during the cytosolic stress response.
引用
收藏
页码:404 / U80
页数:9
相关论文
共 37 条
  • [1] Regulation of HSF1 Function in the Heat Stress Response: Implications in Aging and Disease
    Anckar, Julius
    Sistonen, Lea
    [J]. ANNUAL REVIEW OF BIOCHEMISTRY, VOL 80, 2011, 80 : 1089 - 1115
  • [2] A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules
    Banaszynski, Laura A.
    Chen, Lin-chun
    Maynard-Smith, Lystranne A.
    Ooi, A. G. Lisa
    Wandless, Thomas J.
    [J]. CELL, 2006, 126 (05) : 995 - 1004
  • [3] Mechanism of protein biosynthesis in mammalian mitochondria
    Christian, Brooke E.
    Spremulli, Linda L.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (9-10): : 1035 - 1054
  • [4] PROTEIN-SYNTHESIS AND PROTEIN-PHOSPHORYLATION DURING HEAT-STRESS, RECOVERY, AND ADAPTATION
    DUNCAN, RF
    HERSHEY, JWB
    [J]. JOURNAL OF CELL BIOLOGY, 1989, 109 (04) : 1467 - 1481
  • [5] Functional specialization of ribosomes?
    Gilbert, Wendy V.
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2011, 36 (03) : 127 - 132
  • [6] Transcriptional and translational control in the mammalian unfolded protein response
    Harding, HP
    Calfon, M
    Urano, F
    Novoa, I
    Ron, D
    [J]. ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2002, 18 : 575 - 599
  • [7] Translational control in stress and apoptosis
    Holcik, M
    Sonenberg, N
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (04) : 318 - 327
  • [8] The mechanism of eukaryotic translation initiation and principles of its regulation
    Jackson, Richard J.
    Hellen, Christopher U. T.
    Pestova, Tatyana V.
    [J]. NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2010, 11 (02) : 113 - 127
  • [9] SELECTIVE TRANSLATION OF HEAT-SHOCK MESSENGER-RNA IN DROSOPHILA-MELANOGASTER DEPENDS ON SEQUENCE INFORMATION IN THE LEADER
    KLEMENZ, R
    HULTMARK, D
    GEHRING, WJ
    [J]. EMBO JOURNAL, 1985, 4 (08) : 2053 - 2060
  • [10] Ribosome-Mediated Specificity in Hox mRNA Translation and Vertebrate Tissue Patterning
    Kondrashov, Nadya
    Pusic, Aya
    Stumpf, Craig R.
    Shimizu, Kunihiko
    Hsieh, Andrew C.
    Xue, Shifeng
    Ishijima, Junko
    Shiroishi, Toshihiko
    Barna, Maria
    [J]. CELL, 2011, 145 (03) : 383 - 397