On an elementary density problem for polynomials over finite fields

被引:1
|
作者
Yao, WC [1 ]
机构
[1] St Johns & St Marys Inst Technol, Taipei, Taiwan
关键词
irreducible polynomial; k-free polynomial;
D O I
10.1006/ffta.2001.0325
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M is an element of F-q [t] be a fixed polynomial and k greater than or equal to 2 be an integer. In this paper we will give the density of the set of all monic irreducible polynomials P for which P + M is a k-free polynomial. (C) 2001 Academic Press.
引用
收藏
页码:441 / 448
页数:8
相关论文
共 50 条
  • [41] Value sets of polynomials over finite fields
    Das, P
    Mullen, GL
    FINITE FIELDS WITH APPLICATIONS TO CODING THEORY, CRYPTOGRAPHY AND RELATED AREAS, 2002, : 80 - 85
  • [42] Generalized Lucas polynomials over finite fields
    Li, Lisha
    Wang, Qiang
    Zeng, Xiangyong
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 89
  • [43] On the reducibility of cyclotomic polynomials over finite fields
    Harrison, Brett A.
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (09): : 813 - 818
  • [44] Gauss factorials of polynomials over finite fields
    Li, Xiumei
    Sha, Min
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (08) : 2039 - 2054
  • [45] ON PRIMITIVE POLYNOMIALS OVER FINITE-FIELDS
    JUNGNICKEL, D
    VANSTONE, SA
    JOURNAL OF ALGEBRA, 1989, 124 (02) : 337 - 353
  • [46] Generators and irreducible polynomials over finite fields
    Wan, DQ
    MATHEMATICS OF COMPUTATION, 1997, 66 (219) : 1195 - 1212
  • [47] Factorization of Dickson polynomials over finite fields
    Nelcy Esperanza Arévalo Baquero
    Fabio Enrique Brochero Martinez
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 1050 - 1062
  • [48] Factoring polynomials over special finite fields
    Bach, E
    von zur Gathen, J
    Lenstra, HW
    FINITE FIELDS AND THEIR APPLICATIONS, 2001, 7 (01) : 5 - 28
  • [49] Factorization of Dickson polynomials over finite fields
    Arevalo Baquero, Nelcy Esperanza
    Brochero Martinez, Fabio Enrique
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (02): : 1050 - 1062
  • [50] Iterating additive polynomials over finite fields
    Reis, Lucas
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025,