GENERALIZED FRACTIONAL TOTAL COLORINGS OF GRAPHS

被引:0
|
作者
Karafova, Gabriela [1 ]
Sotak, Roman [1 ]
机构
[1] Safarik Univ, Inst Math, Kosice 04001, Slovakia
关键词
fractional coloring; total coloring; automorphism group;
D O I
10.7151/dmgt.1810
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P and Q be additive and hereditary graph properties and let r, s be integers such that r >= s. Then an r/s-fractional (P, Q)-total coloring of a finite graph G = (V, E) is a mapping f, which assigns an s-element subset of the set {1, 2,..., r} to each vertex and each edge, moreover, for any color i all vertices of color i induce a subgraph with property P, all edges of color i induce a subgraph with property Q and vertices and incident edges have been assigned disjoint sets of colors. The minimum ratio of an r/s-fractional (P, Q)-total coloring of G is called fractional (P, Q)-total chromatic number chi(f,P,Q)''(G) = r/s. We show in this paper that chi(f,P,Q)'' of a graph G with o(V(G)) vertex orbits and o(E(G)) edge orbits can be found as a solution of a linear program with integer coefficients which consists only of o(V(G)) + o(E(G)) inequalities.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 50 条
  • [1] GENERALIZED FRACTIONAL TOTAL COLORINGS OF COMPLETE GRAPHS
    Karafova, Gabriela
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (04) : 665 - 676
  • [2] GENERALIZED FRACTIONAL AND CIRCULAR TOTAL COLORINGS OF GRAPHS
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Mihok, Peter
    Oravcova, Janka
    Sotak, Roman
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) : 517 - 532
  • [3] FRACTIONAL (P, Q)-TOTAL LIST COLORINGS OF GRAPHS
    Kemnitz, Arnfried
    Mihok, Peter
    Voigt, Margit
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (01) : 167 - 179
  • [4] Total colorings of circulant graphs
    Geetha, J.
    Somasundaram, K.
    Fu, Hung-Lin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (05)
  • [5] Total colorings of equibipartite graphs
    Chen, BL
    Dong, L
    Liu, QZ
    Huang, KC
    DISCRETE MATHEMATICS, 1999, 194 (1-3) : 59 - 65
  • [6] Total Colorings of Product Graphs
    Geetha, J.
    Somasundaram, K.
    GRAPHS AND COMBINATORICS, 2018, 34 (02) : 339 - 347
  • [7] Total Colorings of Product Graphs
    J. Geetha
    K. Somasundaram
    Graphs and Combinatorics, 2018, 34 : 339 - 347
  • [8] Adjacent strong edge colorings and total colorings of regular graphs
    Zhang ZhongFu
    Woodall, Douglas R.
    Yao Bing
    Li JingWen
    Chen XiangEn
    Bian Liang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (05): : 973 - 980
  • [9] Adjacent strong edge colorings and total colorings of regular graphs
    ZhongFu Zhang
    Douglas R. Woodall
    Bing Yao
    JingWen Li
    XiangEn Chen
    Liang Bian
    Science in China Series A: Mathematics, 2009, 52 : 973 - 980
  • [10] (P, Q)-Total (r, s)-colorings of graphs
    Kemnitz, Arnfried
    Marangio, Massimiliano
    Pruchnewski, Anja
    Voigt, Margit
    DISCRETE MATHEMATICS, 2015, 338 (10) : 1722 - 1729