Clinical Validation of Copy Number Variant Detection from Targeted Next-Generation Sequencing Panels

被引:98
|
作者
Kerkhof, Jennifer [1 ]
Schenkel, Laila C. [3 ]
Reilly, Jack [1 ]
McRobbie, Sheri [1 ]
Aref-Eshghi, Erfan [3 ]
Stuart, Alan [1 ]
Rupar, C. Anthony [2 ,3 ]
Adams, Paul [4 ]
Hegele, Robert A. [5 ,9 ]
Lin, Hanxin [1 ,3 ]
Rodenhiser, David [6 ,7 ,8 ,10 ]
Knoll, Joan [1 ,3 ]
Ainsworth, Peter. J. [1 ,3 ]
Sadikovic, Bekim [1 ,3 ]
机构
[1] London Hlth Sci Ctr, Mol Diagnost Div, Mol Genet Lab, London, ON, Canada
[2] London Hlth Sci Ctr, Mol Diagnost Div, Biochem Genet Lab, London, ON, Canada
[3] Western Univ, Dept Pathol & Lab Med, London, ON, Canada
[4] Western Univ, Dept Gastroenterol, London, ON, Canada
[5] Western Univ, Dept Med, London, ON, Canada
[6] Western Univ, Dept Biochem, London, ON, Canada
[7] Western Univ, Dept Paediat, London, ON, Canada
[8] Western Univ, Dept Oncol, London, ON, Canada
[9] Western Univ, Robarts Res Inst, London, ON, Canada
[10] Childrens Hlth Res Inst, London Reg Canc Ctr Program, London, ON, Canada
来源
JOURNAL OF MOLECULAR DIAGNOSTICS | 2017年 / 19卷 / 06期
关键词
DEPENDENT PROBE AMPLIFICATION; CANCER; GENES; ASSAY;
D O I
10.1016/j.jmoldx.2017.07.004
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Next-generation sequencing (NGS) technology has rapidly replaced Sanger sequencing in the assessment of sequence variations in clinical genetics laboratories. One major limitation of current NGS approaches is the ability to detect copy number variations (CNVs) approximately >50 bp. Because these represent a major mutational burden in many genetic disorders, parallel CNV assessment using alternate supplemental methods, along with the NGS analysis, is normally required, resulting in increased labor, costs, and turnaround times. The objective of this study was to clinically validate a novel CNV detection algorithm using targeted clinical NGS gene panel data. We have applied this approach in a retrospective cohort of 391 samples and a prospective cohort of 2375 samples and found a 100% sensitivity (95% CI, 89% -100%) for 37 unique events and a high degree of specificity to detect CNVs across nine distinct targeted NGS gene panels. This NGS CNV pipeline enables stand-alone first-tier assessment for CNV and sequence variants in a clinical laboratory setting, dispensing with the need for parallel CNV analysis using classic techniques, such as microarray, long-range PCR, or multiplex ligation dependent probe amplification. This NGS CNV pipeline can also be applied to the assessment of complex genomic regions, including pseudogenic DNA sequences, such as the PMS2CL gene, and to mitochondrial genome heteroplasmy detection.
引用
收藏
页码:905 / 920
页数:16
相关论文
共 50 条
  • [1] Copy Number Variant Detection by Targeted Gene Next-Generation Sequencing
    Myers, C. E.
    Nguyen, H. L.
    Hauenstein, J.
    Saxe, D. F.
    Smith, G. H.
    Hill, C. E.
    Zhang, L.
    Deeb, K. K.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2019, 21 (06): : 1150 - 1151
  • [2] Clinical validation of Copy Number Variant (CNVs) detection by Next-Generation Sequencing (NGS)
    Ferran Martin, A.
    Gonzalez, L.
    Calvo, M.
    Royo, I.
    Camprubi, C.
    Trujillano, D.
    Macia, X.
    Torres, C.
    Gonzalez, E.
    Segura, I.
    Flores, M.
    Nicolas, H. San
    Fortuno, J.
    Campos, N.
    Torrents, A.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1628 - 1628
  • [3] Optimized strategy for copy-number calling in targeted next-generation sequencing panels
    Vyverman, M.
    De Smet, R.
    Vinterhalter, G.
    Slabbinck, B.
    Deceukeleire, J.
    Bettens, K.
    Crappe, J.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 648 - 649
  • [4] Copy number variant detection by anchored multiplex PCR and next-generation sequencing
    Haimes, J. D.
    Covino, J.
    Manoj, N.
    Baravik, E.
    Johnson, L.
    Griffin, L.
    Stahl, J.
    Myers, J. W.
    Culver, B.
    Kudlow, B.
    ANNALS OF ONCOLOGY, 2016, 27
  • [5] VALIDATION OF A NOVEL COPY NUMBER VARIANT DETECTION ALGORITHM FOR CFTR FROM TARGETED NEXT GENERATION SEQUENCING DATA.
    Kosheleva, K.
    Faulkner, N. E.
    Robinson, K.
    Umbarger, M. A.
    FERTILITY AND STERILITY, 2017, 108 (03) : E269 - E269
  • [6] The clinical implementation of copy number detection in the age of next-generation sequencing
    Hehir-Kwa, Jayne Y.
    Tops, Bastiaan B. J.
    Kemmeren, Patrick
    EXPERT REVIEW OF MOLECULAR DIAGNOSTICS, 2018, 18 (10) : 907 - 915
  • [7] Free-access copy-number variant detection tools for targeted next-generation sequencing data
    Roca, Iria
    Gonzalez-Castro, Lorena
    Fernandez, Helena
    Luz Couce, Ma
    Fernandez-Marmiesse, Ana
    MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH, 2019, 779 : 114 - 125
  • [8] Sensitive Copy Number Variant Detection by Anchored Multiplex PCR and Next-Generation Sequencing
    Haimes, J. D.
    Covino, J.
    Manoj, N.
    Baravik, E.
    Johnson, L.
    Griffin, L.
    Stahl, J.
    Culver, B. P.
    Kudlow, B.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2016, 18 (06): : 1035 - 1035
  • [9] Clinical Targeted Next-Generation Sequencing Panels for Detection of Somatic Variants in Gliomas
    Shin, Hyemi
    Sa, Jason K.
    Bae, Joon Seol
    Koo, Harim
    Jin, Seonwhee
    Cho, Hee Jin
    Choi, Seung Won
    Kyoung, Jong Min
    Kim, Ja Yeon
    Seo, Yun Jee
    Joung, Je-Gun
    Kim, Nayoung K. D.
    Son, Dae-Soon
    Chung, Jongsuk
    Lee, Taeseob
    Kong, Doo-Sik
    Choi, Jung Won
    Seol, Ho Jun
    Lee, Jung-Il
    Suh, Yeon-Lim
    Park, Woong-Yang
    Nam, Do-Hyun
    CANCER RESEARCH AND TREATMENT, 2020, 52 (01): : 41 - 50
  • [10] Evaluation of copy number variant detection from panel-based next-generation sequencing data
    Yao, Ruen
    Yu, Tingting
    Qing, Yanrong
    Wang, Jian
    Shen, Yiping
    MOLECULAR GENETICS & GENOMIC MEDICINE, 2019, 7 (01):