Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N

被引:229
作者
Park, Kyusung [1 ]
Goodenough, John B. [1 ]
机构
[1] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
关键词
batteries; dendrite; Li3N; lithium; wetting; ATOMIC LAYER DEPOSITION; METAL ANODES; SURFACE MODIFICATION; IONIC-CONDUCTIVITY; CYCLING EFFICIENCY; CURRENT COLLECTOR; GEL ELECTROLYTES; GROWTH; ELECTRODEPOSITION; BATTERIES;
D O I
10.1002/aenm.201700732
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium-ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li-3 N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li3N particle is without dendrite nucleation. The Li3N particles create a higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li3N-modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm(-2) for more than 100 cycles. The origin of the bonding responsible for wetting of the Li3N particles by lithium and for plating through a Li3N particle is discussed.
引用
收藏
页数:7
相关论文
共 38 条
[1]   IONIC-CONDUCTIVITY IN LI3N SINGLE-CRYSTALS [J].
ALPEN, UV ;
RABENAU, A ;
TALAT, GH .
APPLIED PHYSICS LETTERS, 1977, 30 (12) :621-623
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   IMPEDANCE SPECTROSCOPY OF LITHIUM ELECTRODES .1. GENERAL BEHAVIOR IN PROPYLENE CARBONATE SOLUTIONS AND THE CORRELATION TO SURFACE-CHEMISTRY AND CYCLING EFFICIENCY [J].
AURBACH, D ;
ZABAN, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1993, 348 (1-2) :155-179
[4]   THE BEHAVIOR OF LITHIUM ELECTRODES IN PROPYLENE AND ETHYLENE CARBONATE - THE MAJOR FACTORS THAT INFLUENCE LI CYCLING EFFICIENCY [J].
AURBACH, D ;
GOFER, Y ;
BENZION, M ;
APED, P .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1992, 339 (1-2) :451-471
[5]   Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries [J].
Cheng, Xin-Bing ;
Zhang, Qiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (14) :7207-7209
[6]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[7]   Lithium metal stripping/plating mechanisms studies: A metallurgical approach [J].
Gireaud, L. ;
Grugeon, S. ;
Laruelle, S. ;
Yrieix, B. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (10) :1639-1649
[8]   Dendrite Suppression by Shock Electrodeposition in Charged Porous Media [J].
Han, Ji-Hyung ;
Wang, Miao ;
Bai, Peng ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
SCIENTIFIC REPORTS, 2016, 6
[9]   Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores [J].
Han, Ji-Hyung ;
Khoo, Edwin ;
Bai, Peng ;
Bazant, Martin Z. .
SCIENTIFIC REPORTS, 2014, 4
[10]   Galvanostatic nucleation and growth under diffusion control [J].
Isaev, Vladimir A. ;
Grishenkova, Olga V. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (06) :1505-1508