Approximate Subgroups of Linear Groups

被引:105
作者
Breuillard, Emmanuel [1 ]
Green, Ben [2 ]
Tao, Terence [3 ]
机构
[1] Univ Paris 11, Math Lab, F-91405 Orsay, France
[2] Ctr Math Sci, Cambridge CB3 0WA, England
[3] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Approximate group; linear group; GROWTH; FIELDS;
D O I
10.1007/s00039-011-0122-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish various results on the structure of approximate subgroups in linear groups such as SLn(k) that were previously announced by the authors. For example, generalising a result of Helfgott (who handled the cases n = 2 and 3), we show that any approximate subgroup of SLn(Fq) which generates the group must be either very small or else nearly all of SLn(Fq). The argument generalises to other absolutely almost simple connected (and non-commutative) algebraic groups G over an arbitrary field k and yields a classification of approximate subgroups of G(k). In a subsequent paper, we will give applications of this result to the expansion properties of Cayley graphs.
引用
收藏
页码:774 / 819
页数:46
相关论文
共 64 条
[1]   Combinatorial Nullstellensatz [J].
Alon, N .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :7-29
[2]  
[Anonymous], ARXIV10014556
[3]  
[Anonymous], 1972, SIMPLE GROUPS LIE TY
[4]  
[Anonymous], INVENT MATH IN PRESS
[5]  
[Anonymous], 1966, Inst. Hautes Etudes Sci. Publ. Math., P255
[6]  
[Anonymous], I HAUTES ETUDES SCI, DOI 10.1007/BF02698687
[7]  
[Anonymous], NEW YORK J MATH
[8]   ON THE DIAMETER OF PERMUTATION-GROUPS [J].
BABAI, L ;
SERESS, A .
EUROPEAN JOURNAL OF COMBINATORICS, 1992, 13 (04) :231-243
[9]  
Babai L, 2008, PROCEEDINGS OF THE NINETEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P248
[10]  
Borel A., 1991, Linear Algebraic Groups, DOI [10.1007/978-1-4612-0941-6, DOI 10.1007/978-1-4612-0941-6]