Error Estimates for Near-Real-Time Satellite Soil Moisture as Derived From the Land Parameter Retrieval Model

被引:101
|
作者
Parinussa, Robert M. [1 ]
Meesters, Antoon G. C. A. [1 ]
Liu, Yi Y. [2 ,3 ]
Dorigo, Wouter [4 ]
Wagner, Wolfgang [4 ]
de Jeu, Richard A. M. [1 ]
机构
[1] Vrije Univ Amsterdam, Dept Hydrol & Geoenvironm Sci, Fac Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands
[2] Univ New S Wales, Sch Civil & Environm Engn, Sydney, NSW 2052, Australia
[3] Commonwealth Sci & Ind Res Org Land & Water, Canberra, ACT 2601, Australia
[4] Vienna Univ Technol, Inst Photogrammetry & Remote Sensing, A-1040 Vienna, Austria
基金
美国国家航空航天局;
关键词
Analytical solution; error analysis; passive microwave; radiative transfer; soil moisture; VEGETATION OPTICAL DEPTH; MICROWAVE; METHODOLOGY;
D O I
10.1109/LGRS.2011.2114872
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A time-efficient solution to estimate the error of satellite surface soil moisture from the land parameter retrieval model is presented. The errors are estimated using an analytical solution for soil moisture retrievals from this radiative-transfer-based model that derives soil moisture from low-frequency passive microwave observations. The error estimate is based on a basic error propagation equation which uses the partial derivatives of the radiative transfer equation and estimated errors for each individual input parameter. Results similar to those of the Monte Carlo approach show that the developed time-efficient methodology could substitute computationally intensive methods. This procedure is therefore a welcome solution for near-real-time data assimilation studies where both the soil moisture product and error estimate are needed. The developed method is applied to the C-, X-, and Ku-bands of the Aqua/Advanced Microwave Scanning Radiometer for Earth Observing System sensor to study differences in errors between frequencies.
引用
收藏
页码:779 / 783
页数:5
相关论文
共 50 条
  • [1] A Machine Learning Approach for Improving Near-Real-Time Satellite-Based Rainfall Estimates by Integrating Soil Moisture
    Kumar, Ashish
    Ramsankaran, Raaj
    Brocca, Luca
    Munoz-Arriola, Francisco
    REMOTE SENSING, 2019, 11 (19)
  • [2] Combining satellite observations to develop a global soil moisture product for near-real-time applications
    Enenkel, Markus
    Reimer, Christoph
    Dorigo, Wouter
    Wagner, Wolfgang
    Pfeil, Isabella
    Parinussa, Robert
    De Jeu, Richard
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2016, 20 (10) : 4191 - 4208
  • [3] Comparison of near-real-time precipitation estimates from satellite observations and numerical models
    Ebert, Elizabeth E.
    Janowiak, John E.
    Kidd, Chris
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2007, 88 (01) : 47 - +
  • [4] Global SMOS Soil Moisture Retrievals from The Land Parameter Retrieval Model
    van der Schalie, R.
    Kerr, Y. H.
    Wignerond, J. P.
    Rodriguez-Fernandez, N. J.
    Al-Yaari, A.
    de Jeu, R. A. M.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2016, 45 : 125 - 134
  • [5] Near-real-time one-kilometre Soil Moisture Active Passive soil moisture data product
    Yin, Jifu
    Zhan, Xiwu
    Liu, Jicheng
    Moradkhani, Hamid
    Fang, Li
    Walker, Jeffrey P.
    HYDROLOGICAL PROCESSES, 2020, 34 (21) : 4083 - 4096
  • [6] Satellite-based near-real-time global daily terrestrial evapotranspiration estimates
    Huang, Lei
    Luo, Yong
    Chen, Jing M.
    Tang, Qiuhong
    Steenhuis, Tammo
    Cheng, Wei
    Shi, Wen
    EARTH SYSTEM SCIENCE DATA, 2024, 16 (09) : 3993 - 4019
  • [7] Mapping near-real-time soil moisture dynamics over Tasmania with transfer learning
    Widyastuti, Marliana Tri
    Padarian, Jose
    Minasny, Budiman
    Webb, Mathew
    Taufik, Muh
    Kidd, Darren
    SOIL, 2025, 11 (01) : 287 - 307
  • [8] From TRMM to GPM, how do improvements of post/near-real-time satellite precipitation estimates manifest?
    Shen, Zhehui
    Yong, Bin
    Yi, Lu
    Wu, Hao
    Xu, Hui
    ATMOSPHERIC RESEARCH, 2022, 268
  • [9] A global analysis of soil moisture derived from satellite observations and a land surface model
    Rebel, K. T.
    de Jeu, R. A. M.
    Ciais, P.
    Viovy, N.
    Piao, S. L.
    Kiely, G.
    Dolman, A. J.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (03) : 833 - 847
  • [10] Intercomparison of near-real-time biomass burning emissions estimates constrained by satellite fire data
    NASA Langley Research Center, Hampton, VA, United States
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    不详
    Journal of Applied Remote Sensing, 2008, 2 (01):