A lightweight variable stiffness knee exoskeleton driven by shape memory alloy

被引:11
作者
Zhang, Jiaqi [1 ]
Cong, Ming [1 ]
Liu, Dong [1 ]
Du, Yu [2 ]
Ma, Hongjiang [1 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
[2] Dalian Dahuazhongtian Technol Co Ltd, Dalian, Peoples R China
来源
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION | 2022年 / 49卷 / 05期
关键词
Variable stiffness actuator; Model-based control; Shape memory alloy; Knee exoskeleton; JOINT STIFFNESS; ACTUATOR; DESIGN;
D O I
10.1108/IR-11-2021-0262
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose This paper aims to get rid of the traditional basic principle of using the motor as the variable stiffness drive source, simplify the structure of the exoskeleton and reduce the quality of the exoskeleton. This paper proposes to use shape memory alloys (SMA) as the variable stiffness drive source. Design/methodology/approach In this study, SMA is used to construct the active variable stiffness unit, the Brinson constitutive model is used to establish a dynamic model to control the active variable stiffness unit and the above active variable stiffness unit is used to realize the force control function and construct a lightweight, variable stiffness knee exoskeleton. Findings The dynamic model constructed in this paper can preliminarily describe the phase transformation process of the active variable stiffness unit and realize the variable stiffness function of the knee exoskeleton. The variable stiffness exoskeleton can effectively reduce the driving error under the high-speed walking condition. Originality/value The contribution of this paper is to combine SMAs to construct an active variable stiffness unit, build a dynamic model for controlling the active variable stiffness unit and construct a lightweight, variable stiffness knee exoskeleton.
引用
收藏
页码:994 / 1007
页数:14
相关论文
共 40 条
[31]   MACCEPA, the mechanically adjustable compliance and controllable equilibrium position actuator: Design and implementation in a biped robot [J].
Van Ham, Ronald ;
Vanderborght, Bram ;
Van Damme, Michael ;
Verrelst, Bjorn ;
Lefeber, Dirk .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2007, 55 (10) :761-768
[32]   Variable impedance actuators: A review [J].
Vanderborght, B. ;
Albu-Schaeffer, A. ;
Bicchi, A. ;
Burdet, E. ;
Caldwell, D. G. ;
Carloni, R. ;
Catalano, M. ;
Eiberger, O. ;
Friedl, W. ;
Ganesh, G. ;
Garabini, M. ;
Grebenstein, M. ;
Grioli, G. ;
Haddadin, S. ;
Hoppner, H. ;
Jafari, A. ;
Laffranchi, M. ;
Lefeber, D. ;
Petit, F. ;
Stramigioli, S. ;
Tsagarakis, N. ;
Van Damme, M. ;
Van Ham, R. ;
Visser, L. C. ;
Wolf, S. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2013, 61 (12) :1601-1614
[33]  
Vanderborght B, 2009, IEEE INT CONF ROBOT, P179
[34]   Shape Memory Alloy-Based Soft Gripper with Variable Stiffness for Compliant and Effective Grasping [J].
Wang, Wei ;
Ahn, Sung-Hoon .
SOFT ROBOTICS, 2017, 4 (04) :379-389
[35]  
Wolf S., 2011, 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), P5082, DOI 10.1109/ICRA.2011.5980303
[36]   Modeling of grasping force for a soft robotic gripper with variable stiffness [J].
Yin Haibin ;
Kong Cheng ;
Li Junfeng ;
Yang Guilin .
MECHANISM AND MACHINE THEORY, 2018, 128 :254-274
[37]   Active Variable Stiffness Fibers for Multifunctional Robotic Fabrics [J].
Yuen, Michelle C. ;
Bilodeau, R. Adam ;
Kramer, Rebecca K. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02) :708-715
[38]   A new variable stiffness actuator and its control method [J].
Zhang, Lei ;
Wang, Wendong ;
Shi, Yikai ;
Chu, Yang ;
Ming, Xing .
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2019, 46 (04) :553-560
[39]   A Stiffness Variable Passive Compliance Device with Reconfigurable Elastic Inner Skeleton and Origami Shell [J].
Zhang, Zhuang ;
Chen, Genliang ;
Fan, Weicheng ;
Yan, Wei ;
Kong, Lingyu ;
Wang, Hao .
CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2020, 33 (01)
[40]  
Zhu Y., 2021, IEEEASME T MECHATRON, V1, P1