Adaptive Neural Network-based Synchronization Control for Dual-drive Servo System

被引:0
作者
Suprapto [1 ]
Mao, Wei-Lung [1 ,2 ]
机构
[1] Natl Yunlin Univ Sci & Technol, Grad Sch Engn Sci & Technol, Doulio, Yunlin, Taiwan
[2] Natl Yunlin Univ Sci & Technol, Dept Elect Engn, Doulio, Yunlin, Taiwan
来源
2014 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY2014) | 2014年
关键词
Back Propagation Neural network (BPNN); Radial Basis function Neural Network (RBFNN); Dual-drive Servo; Synchronization Control;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the neural network control is proposed for master-slave method of dual-drive servo system application. The architecture of control system includes traditional PID, back propagation neural network (BPNN) and radial basis function neural network (RBFNN). The BPNN can adjust three parameters of traditional PID automatically. The RBFNN approximation can determine the characteristics of servo system from given input and output sets. By combining PID, BPNN and RBFNN structure, the adaptive neural network-based method can achieve accurate control of nonlinear systems in synchronization for dual-drive servo. It is shown that the system performance of synchronization control including the speed output, the accuracy and the robustness works well with better dynamic and static characteristics.
引用
收藏
页码:19 / 23
页数:5
相关论文
共 12 条
  • [1] LEARNING WITHOUT LOCAL MINIMA IN RADIAL BASIS FUNCTION NETWORKS
    BIANCHINI, M
    FRASCONI, P
    GORI, M
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (03): : 749 - 756
  • [2] Francisco C. N., 2004, 30 ANN C IEEE IND EL, P3
  • [3] Precise position synchronous control of multi-axis servo system
    Jeong, Seok-Kwon
    You, Sam-Sang
    [J]. MECHATRONICS, 2008, 18 (03) : 129 - 140
  • [4] Nour MIH, 2007, ICIAS 2007: INTERNATIONAL CONFERENCE ON INTELLIGENT & ADVANCED SYSTEMS, VOLS 1-3, PROCEEDINGS, P209
  • [5] Nunez C., 2014, Int. J. Sci. Eng. Technol. Res, V3, P319
  • [6] Park S. I., 1991, NEURAL COMPUT, V3, P246
  • [7] Suni Y. C. S., 1994, IEEE T NEURAL NETWOR, V5, P584
  • [8] An optimal fuzzy PID controller
    Tang, KS
    Man, KF
    Chen, GR
    Kwong, S
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2001, 48 (04) : 757 - 765
  • [9] Wei W., 2003, NEURAL NETWORK COMPU
  • [10] Yambo S. L. Che, 2006, 2 INT C POW EL SYST, P68