Quantum interference in silicon one-dimensional junctionless nanowire field-effect transistors

被引:5
作者
Schupp, F. J. [1 ]
Mirza, Muhammad M. [2 ]
MacLaren, Donald A. [3 ]
Briggs, G. Andrew D. [1 ]
Paul, Douglas J. [2 ]
Mol, Jan A. [1 ]
机构
[1] Univ Oxford, Dept Mat, 16 Pk Rd, Oxford OX1 3PH, England
[2] Univ Glasgow, Sch Engn, Rankine Bldg,Oakfield Ave, Glasgow G12 8LT, Lanark, Scotland
[3] Univ Glasgow, SUPA, Sch Phys & Astron, Kelvin Bldg,Univ Ave, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
CONDUCTANCE; TRANSPORT;
D O I
10.1103/PhysRevB.98.235428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the low-temperature transport in 8-nm-diam Si junctionless nanowire field-effect transistors fabricated by top down techniques with a wraparound gate and two different phosphorus doping concentrations. First we extract the intrinsic gate capacitance of the device geometry from a device that demonstrates Coulomb blockade at 12 mK with over 500 Coulomb peaks across a gate-voltage range of 6 V indicating the formation of an island in the entire 150-nm-long nanowire channel. In two other devices, made from silicon on insulator wafers that were doped to an activated dopant concentration of Si:P 4 x 10(19) and 2 x 10(20) cm(-3), we observe quantum interference and use the extracted gate coupling to determine the mean free paths from the dominant energy scale on the gate-voltage axis. For the higher doped device, the analysis yields a mean free path of 4 +/- 2 nm, which is on the order of the average spacing of phosphorus atoms and suggests scattering on unactivated or activated dopants. For the device with an implanted phosphorus density of 4 x 10(19) cm(-3), the quantum interference effects suggest a mean free path of 10 +/- 2 nm, which is comparable to the nanowire width, and thus allows for coherent formation of transversal modes. The results suggest that the low-temperature mobility is limited by scattering on phosphorus dopants rather than the expected surface roughness scattering for nanowires with diameters larger than or comparable to the Fermi wavelength. A temperature-dependent analysis of universal conductance fluctuations indicates a phase-coherence length greater than the nanowire length for temperatures below 1.9 K, and decoherence from one-dimensional electron-electron interactions dominates transport for higher temperatures. Our measurements, therefore, provide insight into scattering and dephasing mechanisms in technologically relevant silicon device geometries, which will help with future design choices with regard to, e.g., doping density.
引用
收藏
页数:7
相关论文
共 37 条
[1]   Toward Nanowire Electronics [J].
Appenzeller, Joerg ;
Knoch, Joachim ;
Bjoerk, Mikael I. ;
Riel, Heike ;
Schmid, Heinz ;
Riess, Walter .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2008, 55 (11) :2827-2845
[2]  
BEENAKKER CWJ, 1991, SOLID STATE PHYS, V44, P1
[3]   Anomalous conductance quantization in carbon nanotubes [J].
Biercuk, MJ ;
Mason, N ;
Martin, J ;
Yacoby, A ;
Marcus, CM .
PHYSICAL REVIEW LETTERS, 2005, 94 (02)
[4]  
Björk MT, 2009, NAT NANOTECHNOL, V4, P103, DOI [10.1038/NNANO.2008.400, 10.1038/nnano.2008.400]
[5]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[6]   CONDUCTANCE OF AN ARRAY OF ELASTIC SCATTERERS - A SCATTERING-MATRIX APPROACH [J].
CAHAY, M ;
MCLENNAN, M ;
DATTA, S .
PHYSICAL REVIEW B, 1988, 37 (17) :10125-10136
[7]   Electron transport in very clean, as-grown suspended carbon nanotubes [J].
Cao, J ;
Wang, Q ;
Dai, H .
NATURE MATERIALS, 2005, 4 (10) :745-749
[8]  
Colinge JP, 2010, NAT NANOTECHNOL, V5, P225, DOI [10.1038/nnano.2010.15, 10.1038/NNANO.2010.15]
[9]   Ionization energy of donor and acceptor impurities in semiconductor nanowires: Importance of dielectric confinement [J].
Diarra, Mamadou ;
Niquet, Yann-Michel ;
Delerue, Christophe ;
Allan, Guy .
PHYSICAL REVIEW B, 2007, 75 (04)
[10]   Secondary Electron Interference from Trigonal Warping in Clean Carbon Nanotubes [J].
Dirnaichner, A. ;
del Valle, M. ;
Goetz, K. J. G. ;
Schupp, F. J. ;
Paradiso, N. ;
Grifoni, M. ;
Strunk, Ch. ;
Huettel, A. K. .
PHYSICAL REVIEW LETTERS, 2016, 117 (16)