Systematic Review of Cancer Targeting by Nanoparticles Revealed a Global Association between Accumulation in Tumors and Spleen

被引:31
作者
Drozdov, Andrey S. [1 ]
Nikitin, Petr I. [2 ]
Rozenberg, Julian M. [3 ]
机构
[1] Moscow Inst Phys & Technol, Lab Nanobiotechnol, Dolgoprudnyi 141700, Russia
[2] Russian Acad Sci, Prokhorov Gen Phys Inst, Moscow 119991, Russia
[3] Moscow Inst Phys & Technol, Cell Signaling Regulat Lab, Dolgoprudnyi 141700, Russia
基金
俄罗斯科学基金会;
关键词
nanoparticles for drug delivery; functionalization; cancer targeting; nanoparticle therapy; biodistribution; ACCELERATED BLOOD CLEARANCE; IRGD-MODIFIED LIPOSOMES; MESENCHYMAL STEM-CELLS; TRANSFERRIN RECEPTOR 1; IN-VIVO; BREAST-CANCER; CARBON NANOTUBES; CHITOSAN NANOPARTICLES; LIPID NANOPARTICLES; OXIDE NANOPARTICLES;
D O I
10.3390/ijms222313011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Active targeting of nanoparticles toward tumors is one of the most rapidly developing topics in nanomedicine. Typically, this strategy involves the addition of cancer-targeting biomolecules to nanoparticles, and studies on this topic have mainly focused on the localization of such formulations in tumors. Here, the analysis of the factors determining efficient nanoparticle targeting and therapy, various parameters such as types of targeting molecules, nanoparticle type, size, zeta potential, dose, and the circulation time are given. In addition, the important aspects such as how active targeting of nanoparticles alters biodistribution and how non-specific organ uptake influences tumor accumulation of the targeted nanoformulations are discussed. The analysis reveals that an increase in tumor accumulation of targeted nanoparticles is accompanied by a decrease in their uptake by the spleen. There is no association between targeting-induced changes of nanoparticle concentrations in tumors and other organs. The correlation between uptake in tumors and depletion in the spleen is significant for mice with intact immune systems in contrast to nude mice. Noticeably, modulation of splenic and tumor accumulation depends on the targeting molecules and nanoparticle type. The median survival increases with the targeting-induced nanoparticle accumulation in tumors; moreover, combinatorial targeting of nanoparticle drugs demonstrates higher treatment efficiencies. Results of the comprehensive analysis show optimal strategies to enhance the efficiency of actively targeted nanoparticle-based medicines.
引用
收藏
页数:25
相关论文
共 190 条
[11]   Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer [J].
Bharali, Dhruba J. ;
Yalcin, Murat ;
Davis, Paul J. ;
Mousa, Shaker A. .
NANOMEDICINE, 2013, 8 (12) :1943-1954
[12]   iRGD in combination with IL-2 reprograms tumor immunosuppression. [J].
Botta, Gregory P. ;
De Mendoza, Tatiana Hurtado ;
Jarvelainen, Harri ;
Ruoslahti, Erkki .
JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (08)
[13]   Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine [J].
Burdanova, Maria G. ;
Kharlamova, Marianna, V ;
Kramberger, Christian ;
Nikitin, Maxim P. .
NANOMATERIALS, 2021, 11 (11)
[14]   Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics [J].
Cao, Zhi-Ting ;
Gan, Li-Qin ;
Jiang, Wei ;
Wang, Ji-Long ;
Zhang, Hou-Bing ;
Zhang, Yue ;
Wang, Yucai ;
Yang, Xianzhu ;
Xiong, Menghua ;
Wang, Jun .
ACS NANO, 2020, 14 (03) :3563-3575
[15]   Passive targeting of high-grade gliomas via the EPR effect: a closed path for metallic nanoparticles? [J].
Caro, Carlos ;
Avasthi, Ashish ;
Paez-Munoz, Jose M. ;
Pernia Leal, Manuel ;
Garcia-Martin, Maria L. .
BIOMATERIALS SCIENCE, 2021, 9 (23) :7984-7995
[16]   Emerging Role of the Spleen in the Pharmacokinetics of Monoclonal Antibodies, Nanoparticles and Exosomes [J].
Cataldi, Mauro ;
Vigliotti, Chiara ;
Mosca, Teresa ;
Cammarota, MariaRosaria ;
Capone, Domenico .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2017, 18 (06)
[17]   Clinical scale synthesis of intrinsically radiolabeled and cyclic RGD peptide functionalized 198Au nanoparticles for targeted cancer therapy [J].
Chakravarty, Rubel ;
Chakraborty, Sudipta ;
Guleria, Apurav ;
Kumar, Chandan ;
Kunwar, Amit ;
Nair, K. V. Vimalnath ;
Sarma, Haladhar Dev ;
Dash, Ashutosh .
NUCLEAR MEDICINE AND BIOLOGY, 2019, 72-73 :1-10
[18]   Recognition of Dextran-Superparamagnetic Iron Oxide Nanoparticle Conjugates (Feridex) via Macrophage Scavenger Receptor Charged Domains [J].
Chao, Ying ;
Makale, Milan ;
Karmali, Priya Prakash ;
Sharikov, Yuriy ;
Tsigelny, Igor ;
Merkulov, Sergei ;
Kesari, Santosh ;
Wrasidlo, Wolf ;
Ruoslahti, Erkki ;
Simberg, Dmitri .
BIOCONJUGATE CHEMISTRY, 2012, 23 (05) :1003-1009
[19]   Development of Chitosan Oligosaccharide-Modified Gold Nanorods for in Vivo Targeted Delivery and Noninvasive Imaging by NIR Irradiation [J].
Charan, Shobhit ;
Sanjiv, Kumar ;
Singh, Narendra ;
Chien, Fan-Ching ;
Chen, Yi-Fan ;
Nergui, Navchtsetseg Navchaa ;
Huang, Shih-Hsin ;
Kuo, Chiung Wen ;
Lee, Te-Chang ;
Chen, Peilin .
BIOCONJUGATE CHEMISTRY, 2012, 23 (11) :2173-2182
[20]   CD38-Mediated Immunosuppression as a Mechanism of Tumor Cell Escape from PD-1/PD-L1 Blockade [J].
Chen, Limo ;
Diao, Lixia ;
Yang, Yongbin ;
Yi, Xiaohui ;
Rodriguez, Leticia ;
Li, Yanli ;
Villalobos, Pamela A. ;
Cascone, Tina ;
Liu, Xi ;
Tan, Lin ;
Lorenzi, Philip L. ;
Huang, Anfei ;
Zhao, Qiang ;
Peng, Di ;
Fradette, Jared J. ;
Peng, David H. ;
Ungewiss, Christin ;
Roybal, Jonathon ;
Tong, Pan ;
Oba, Junna ;
Skoulidis, Ferdinandos ;
Peng, Weiyi ;
Carter, Brett W. ;
Gay, Carl M. ;
Fan, Youhong ;
Class, Caleb A. ;
Zhu, Jingfen ;
Rodriguez-Canales, Jaime ;
Kawakami, Masanori ;
Byers, Lauren Averett ;
Woodman, Scott E. ;
Papadimitrakopoulou, Vassiliki A. ;
Dmitrovsky, Ethan ;
Wang, Jing ;
Ullrich, Stephen E. ;
Wistuba, Ignacio I. ;
Heymach, John V. ;
Qin, F. Xiao-Feng ;
Gibbons, Don L. .
CANCER DISCOVERY, 2018, 8 (09) :1156-1175