Thermopower Study of GaN-Based Materials for Next-Generation Thermoelectric Devices and Applications

被引:44
|
作者
Hurwitz, Elisa N. [1 ]
Asghar, Muhammad [3 ]
Melton, Andrew [4 ]
Kucukgok, Bahadir [5 ]
Su, Liqin [1 ]
Orocz, Mateusz [1 ]
Jamil, Muhammad [4 ]
Lu, Na [2 ]
Ferguson, Ian T. [1 ]
机构
[1] Univ N Carolina, Dept Elect & Comp Engn, Charlotte, NC 28223 USA
[2] Univ N Carolina, Dept Engn Technol, Sustainable Mat & Renewable Technol SMART Lab, Charlotte, NC 28223 USA
[3] Islamia Univ Bahawalpur, Dept Phys, Bahawalpur 63100, Pakistan
[4] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA
[5] Univ N Carolina, Dept Phys & Opt Sci, Charlotte, NC 28223 USA
关键词
Thermoelectrics; III-nitrides; Seebeck; GaN; InGaN; GaN:Gd; MOCVD; thermopower; FREESTANDING GAN;
D O I
10.1007/s11664-010-1416-9
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
III-nitride InGaN-based solar cells have gained importance because their band gap can potentially cover most of the solar spectrum, spanning 0.7 eV to 3.4 eV. However, to use these materials to harvest additional energy, other properties such as their thermoelectric properties should be exploited. In this work, the Seebeck coefficient and the electrical conductivity of three InGaN alloys with various indium concentrations and Gd-doped GaN (GaN:Gd) were measured, and the power factor was calculated. We report a Seebeck value of similar to 209 mu V/K for Gd-doped GaN.
引用
收藏
页码:513 / 517
页数:5
相关论文
共 50 条
  • [21] GaN-based Room Temperature Spintronics for Next Generation Low Power Consumption Electronic Devices
    Saravade, Vishal
    Ghods, Amirhossein
    Woode, Andrew P.
    Zhou, Chuanle
    Ferguson, Ian
    2019 IEEE 16TH INTERNATIONAL CONFERENCE ON SMART CITIES: IMPROVING QUALITY OF LIFE USING ICT, IOT AND AI (IEEE HONET-ICT 2019), 2019, : 203 - 204
  • [22] Generation-recombination noise in GaN-based devices
    Rumyantsev, Sergey L.
    Pala, Nezih
    Shur, Michael S.
    Levinshtein, Michael E.
    Gaska, Remis
    Khan, M. Asif
    Simin, Grigory
    International Journal of High Speed Electronics and Systems, 2004, 14 (01) : 175 - 195
  • [23] Modeling of electron transport in GaN-Based materials and devices
    Vitanov, S.
    Palankovski, V.
    Quay, R.
    Langer, E.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 1399 - +
  • [24] Review of radiation damage in GaN-based materials and devices
    Pearton, Stephen J.
    Deist, Richard
    Ren, Fan
    Liu, Lu
    Polyakov, Alexander Y.
    Kim, Jihyun
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2013, 31 (05):
  • [25] GaN-based devices
    Shur, MS
    2005 SPANISH CONFERENCE ON ELECTRON DEVICES, PROCEEDINGS, 2005, : 15 - 18
  • [26] Printing thermoelectric inks toward next-generation energy and thermal devices
    Zeng, Minxiang
    Zavanelli, Duncan
    Chen, Jiahao
    Saeidi-Javash, Mortaza
    Du, Yipu
    LeBlanc, Saniya
    Snyder, G. Jeffrey
    Zhang, Yanliang
    CHEMICAL SOCIETY REVIEWS, 2022, 51 (02) : 485 - 512
  • [27] Eu-doped GaN-Based Red LED for Next-Generation Micro-LED Displays
    Fujiwara, Yasufumi
    Ichikawa, Shuhei
    Timmerman, Dolf
    Tatebayashi, Jun
    2022 INTERNATIONAL CONFERENCE ON ELECTRONICS PACKAGING (ICEP 2022), 2022, : 35 - 36
  • [28] GaN-based single-chip frontend for next-generation X-band AESA systems
    Schuh, Patrick
    Sledzik, Hardy
    Reber, Rolf
    INTERNATIONAL JOURNAL OF MICROWAVE AND WIRELESS TECHNOLOGIES, 2018, 10 (5-6) : 660 - 665
  • [29] Eu-doped GaN-Based Red LED for Next-Generation Micro-LED Displays
    Fujiwara, Yasufumi
    Ichikawa, Shuhei
    Timmerman, Dolf
    Tatebayashi, Jun
    2022 International Conference on Electronics Packaging, ICEP 2022, 2022, : 35 - 36
  • [30] Next-generation materials
    Owen, Jessica
    Twist, 2021, (113): : 42 - 45