A connection between quadrature formulas on the unit circle and the interval [-1,1]

被引:27
作者
Bultheel, A
Daruis, L
González-Vera, P
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, NALAG, B-3001 Louvain, Belgium
[2] Univ La Laguna, Dept Math Anal, Tenerife, Spain
关键词
numerical quadrature; Gauss quadrature; Szego quadrature; Gauss-Lobatto formula; Gauss-Radau formula;
D O I
10.1016/S0377-0427(00)00594-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish a relation between Gauss quadrature formulas on the interval [- 1,1] that approximate integrals of the form I-sigma(F)= integral (+1)(-1) F(x)alpha (x)dx and Szego quadrature formulas on the unit circle of the complex plane that approximate integrals of the form (I) over tilde (omega)(f)= integral (pi)(-pi)f(e(i theta))omega(theta )d theta. The weight sigma (x) is positive on [ - 1,1] while the weight omega(theta) is positive on [ - pi, pi]. It is shown that if omega(theta) = sigma (cos theta)/sin theta/, then there is an intimate relation between the Gauss and Szego quadrature formulas. Moreover, as a side result we also obtain an easy derivation for relations between orthogonal polynomials with respect to a(x) and orthogonal Szego polynomials with respect to omega(theta). Inclusion of Gauss-Lobatto and Gauss-Radau formulas is natural. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 8 条
[1]  
BULTHEEL A, 1991, ORTHOGONAL POLYNOMIA, V9, P205
[2]  
DARUIS L, 1999, SZEGO QUADRATURE FOR
[3]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[4]  
GERONIMUS Y, 1960, INT SERIES MONOGRAPH
[5]  
Grenander U, 1958, TOEPLITZ FORMS THEIR
[6]   MOMENT THEORY, ORTHOGONAL POLYNOMIALS, QUADRATURE, AND CONTINUED FRACTIONS ASSOCIATED WITH THE UNIT-CIRCLE [J].
JONES, WB ;
NJASTAD, O ;
THRON, WJ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1989, 21 :113-152
[7]  
Krylov V.I., 2006, APPROXIMATE CALCULAT
[8]  
SZEGO G, 1967, AM MATH SOC C PUBL, V33