Numerical analysis of a quasi-static contact problem for a thermoviscoelastic beam

被引:3
|
作者
Copetti, M. I. M. [2 ]
Fernandez, J. R. [1 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 1, Escola Enxeneria Telecomunicac, Vigo 36310, Spain
[2] Univ Fed Santa Maria, Dept Matemat, Lab Anal Numer & Astrofis, BR-97105900 Santa Maria, RS, Brazil
关键词
Thermoviscoelastic beam; Signorini contact conditions; Error estimates; Numerical simulations; DYNAMIC FRICTIONAL CONTACT; THERMOELASTIC BEAM; 2; STOPS; SIMULATIONS; VIBRATIONS; EQUATIONS; BRAKES; MODEL;
D O I
10.1016/j.cam.2011.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we revisit a quasi-static contact problem of a thermoviscoelastic beam between two rigid obstacles which was recently studied in Ill. The variational problem leads to a coupled system, composed of an elliptic variational inequality for the vertical displacement and a linear variational equation for the temperature field. Then, its numerical resolution is considered, based on the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. Error estimates are proved from which, under adequate regularity conditions, the linear convergence is derived. Finally, some numerical simulations are presented to show the accuracy of the algorithm and the behavior of the solution. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4165 / 4173
页数:9
相关论文
共 50 条
  • [1] A quasi-static Signorini contact problem for a thermoviscoelastic beam
    M. I. M. Copetti
    Numerische Mathematik, 2008, 110 : 27 - 47
  • [2] A quasi-static Signorini contact problem for a thermoviscoelastic beam
    Copetti, M. I. M.
    NUMERISCHE MATHEMATIK, 2008, 110 (01) : 27 - 47
  • [3] A quasi-static contact problem in thermoviscoelastic diffusion theory
    Copetti, M. I. M.
    Aouadi, M.
    APPLIED NUMERICAL MATHEMATICS, 2016, 109 : 157 - 183
  • [4] Quasi-static thermoviscoelastic contact problem with slip dependent friction coefficient
    Amassad, A
    Kuttler, KL
    Rochdi, M
    Shillor, M
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (7-8) : 839 - 854
  • [5] THE QUASI-STATIC MODEL OF CONTACT PROBLEM WITH FRICTION
    Pop, Nicolae
    Cioban, Horia
    Butnar, Lucian
    ANNALS OF DAAAM FOR 2009 & PROCEEDINGS OF THE 20TH INTERNATIONAL DAAAM SYMPOSIUM, 2009, 20 : 863 - 864
  • [6] Numerical analysis of quasi-static unilateral contact problems with local friction
    Rocca, R
    Cocou, M
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (04) : 1324 - 1342
  • [7] Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method
    Qiang LYU
    Jingjing LI
    Nenghui ZHANG
    AppliedMathematicsandMechanics(EnglishEdition), 2019, 40 (04) : 549 - 562
  • [8] Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method
    Lyu, Qiang
    Li, Jingjing
    Zhang, Nenghui
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2019, 40 (04) : 549 - 562
  • [9] Quasi-static and dynamical analyses of a thermoviscoelastic Timoshenko beam using the differential quadrature method
    Qiang Lyu
    Jingjing Li
    Nenghui Zhang
    Applied Mathematics and Mechanics, 2019, 40 : 549 - 562
  • [10] Numerical analysis of a quasistatic thermoviscoelastic frictional contact problem
    Campo, M
    Fernández, JR
    COMPUTATIONAL MECHANICS, 2005, 35 (06) : 459 - 469