Numerical analysis of a quasi-static contact problem for a thermoviscoelastic beam

被引:3
作者
Copetti, M. I. M. [2 ]
Fernandez, J. R. [1 ]
机构
[1] Univ Vigo, Dept Matemat Aplicada 1, Escola Enxeneria Telecomunicac, Vigo 36310, Spain
[2] Univ Fed Santa Maria, Dept Matemat, Lab Anal Numer & Astrofis, BR-97105900 Santa Maria, RS, Brazil
关键词
Thermoviscoelastic beam; Signorini contact conditions; Error estimates; Numerical simulations; DYNAMIC FRICTIONAL CONTACT; THERMOELASTIC BEAM; 2; STOPS; SIMULATIONS; VIBRATIONS; EQUATIONS; BRAKES; MODEL;
D O I
10.1016/j.cam.2011.03.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we revisit a quasi-static contact problem of a thermoviscoelastic beam between two rigid obstacles which was recently studied in Ill. The variational problem leads to a coupled system, composed of an elliptic variational inequality for the vertical displacement and a linear variational equation for the temperature field. Then, its numerical resolution is considered, based on the finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. Error estimates are proved from which, under adequate regularity conditions, the linear convergence is derived. Finally, some numerical simulations are presented to show the accuracy of the algorithm and the behavior of the solution. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:4165 / 4173
页数:9
相关论文
共 50 条
  • [1] Numerical Analysis of a Contact Problem Between Two Thermoviscoelastic Beams
    Copetti, M. I. M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (03) : 644 - 661
  • [2] ANALYSIS OF A DYNAMIC CONTACT PROBLEM INVOLVING A NONLINEAR THERMOVISCOELASTIC BEAM WITH SECOND SOUND
    Berti, Alessia
    Copetti, Maria I. M.
    Fernandez, Jose R.
    Naso, Maria Grazia
    11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, : 1043 - 1053
  • [3] Finite element approximation to a contact problem for a nonlinear thermoviscoelastic beam
    Copetti, M. I. M.
    Fernandez, J. R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 383 (02) : 506 - 521
  • [4] Qualitative and numerical analysis of quasi-static problems in elastoplasticity
    Han, WM
    Reddy, BD
    Schroeder, GC
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) : 143 - 177
  • [5] Numerical analysis of the quasistatic thermoviscoelastic thermistor problem
    Fernandez, Jose R.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (02): : 353 - 366
  • [6] Numerical analysis of a non-clamped dynamic thermoviscoelastic contact problem
    Bartman, Piotr
    Bartosz, Krzysztof
    Jureczka, Michal
    Szafraniec, Pawel
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [7] The quasi-static plasmonic problem for polyhedra
    De Leon-Contreras, Marta
    Perfekt, Karl-Mikael
    MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1533 - 1577
  • [8] On quasi-static contact problem with generalized Coulomb friction, normal compliance and damage
    Gasinski, Leszek
    Kalita, Piotr
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2016, 27 (04) : 625 - 646
  • [9] Numerical analysis of quasi-static fracture in functionally graded materials
    Martinez-Paneda, E.
    Gallego, R.
    INTERNATIONAL JOURNAL OF MECHANICS AND MATERIALS IN DESIGN, 2015, 11 (04) : 405 - 424
  • [10] Numerical method for quasi-static adhesive elastic contact subjected to tangential loading
    Chen, Yin
    Zhang, Mengqi
    Wang, Jane
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2023, 282