On an effective solution of the optimal stopping problem for random walks

被引:9
作者
Novikov, AA
Shiryaev, AN
机构
[1] RAS, VA Steklov Math Inst, Moscow 119991, Russia
[2] Univ Technol Sydney, Dept Math Sci, Sydney, NSW 2007, Australia
关键词
optimal stopping; random walk; rate of convergence; Appell polynomials;
D O I
10.1137/S0040585X97981093
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We find a solution of the optimal stopping problem for the case when a reward function is an integer power function of a random walk on an infinite time interval. It is shown that an optimal stopping time is a first crossing time through a level defined as the largest root of Appell's polynomial associated with the maximum of the random walk. It is also shown that a value function of the optimal stopping problem on the finite interval {0, 1,..., T} converges with an exponential rate as T -> infinity to the limit under the assumption that jumps of the random walk are exponentially bounded.
引用
收藏
页码:344 / 354
页数:11
相关论文
共 14 条
  • [1] [Anonymous], 1976, Inequalities for Stochastic Process (How to Gamble If You Must)
  • [2] ON OPTIMAL SYSTEMS
    BLACKWELL, D
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1954, 25 (02): : 394 - 397
  • [3] BOROVKOV A, 1976, STOCHATIC PROCESSES
  • [4] Boyarchenko S., 2002, Non-Gaussian Merton-Black-Scholes Theory, V9
  • [5] Chow Y. S., 1991, THEORY OPTIMAL STOPP
  • [6] Chow Y.S., 1997, Springer Texts in Statistics
  • [7] OPTIMAL STOPPING FOR PARTIAL SUMS
    DARLING, DA
    TAYLOR, HM
    LIGGETT, T
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (04): : 1363 - &
  • [8] KINGMAN JFC, 1970, J ROY STAT SOC B, V32, P102
  • [9] Liu Z, 1999, MATH METHOD OPER RES, V49, P325
  • [10] Optimal stopping and perpetual options for Levy processes
    Mordecki, E
    [J]. FINANCE AND STOCHASTICS, 2002, 6 (04) : 473 - 493