Analyzing and reconciling colocalization and transcriptome-wide association studies from the perspective of inferential reproducibility

被引:17
|
作者
Hukku, Abhay [1 ]
Sampson, Matthew G. [2 ,3 ,4 ]
Luca, Francesca [5 ]
Pique-Regi, Roger [5 ]
Wen, Xiaoquan [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[2] Boston Childrens Hosp, Div Nephrol, Boston, MA 02115 USA
[3] Harvard Med Sch, Dept Pediat, Boston, MA 02115 USA
[4] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[5] Wayne State Univ, Ctr Mol Med & Genet, Detroit, MI 48201 USA
关键词
COMPLEX; GENES; GWAS; EQTL;
D O I
10.1016/j.ajhg.2022.04.005
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Transcriptome-wide association studies and colocalization analysis are popular computational approaches for integrating genetic-association data from molecular and complex traits. They show the unique ability to go beyond variant-level genetic-association evidence and implicate critical functional units, e.g., genes, in disease etiology. However, in practice, when the two approaches are applied to the same molecular and complex-trait data, the inference results can be markedly different. This paper systematically investigates the inferential reproducibility between the two approaches through theoretical derivation, numerical experiments, and analyses of four complex trait GWAS and GTEx eQTL data. We identify two classes of inconsistent inference results. We find that the first class of inconsistent results (i.e., genes with strong colocalization but weak transcriptome-wide association study [TWAS] signals) might suggest an interesting biological phenomenon, i.e., horizontal pleiotropy; thus, the two approaches are truly complementary. The inconsistency in the second class (i.e., genes with weak colocalization but strongTWAS signals) can be understood and effectively reconciled. To this end, we propose a computational approach for locus-level colocalization analysis. We demonstrate that the joint TWAS and locus-level colocalization analysis improves specificity and sensitivity for implicating biologically relevant genes.
引用
收藏
页码:825 / 837
页数:13
相关论文
共 50 条
  • [1] Transcriptome-wide association studies accounting for colocalization using Egger regression
    Barfield, Richard
    Feng, Helian
    Gusev, Alexander
    Wu, Lang
    Zheng, Wei
    Pasaniuc, Bogdan
    Kraft, Peter
    GENETIC EPIDEMIOLOGY, 2018, 42 (05) : 418 - 433
  • [2] Opportunities and challenges for transcriptome-wide association studies
    Wainberg, Michael
    Sinnott-Armstrong, Nasa
    Mancuso, Nicholas
    Barbeira, Alvaro N.
    Knowles, David A.
    Golan, David
    Ermel, Raili
    Ruusalepp, Arno
    Quertermous, Thomas
    Hao, Ke
    Bjorkegren, Johan L. M.
    Im, Hae Kyung
    Pasaniuc, Bogdan
    Rivas, Manuel A.
    Kundaje, Anshul
    NATURE GENETICS, 2019, 51 (04) : 592 - 599
  • [3] Transcriptome-wide association studies: a view from Mendelian randomization
    Huanhuan Zhu
    Xiang Zhou
    Quantitative Biology, 2021, 9 (02) : 107 - 121
  • [4] Transcriptome-wide association studies: a view from Mendelian randomization
    Zhu, Huanhuan
    Zhou, Xiang
    QUANTITATIVE BIOLOGY, 2021, 9 (02) : 107 - 121
  • [5] RECONSIDERING THE VALIDITY OF TRANSCRIPTOME-WIDE ASSOCIATION STUDIES
    de Leeuw, Christiaan
    Werme, Josefin
    Savage, Jeanne
    Peyrot, Wouter
    Posthuma, Danielle
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2021, 51 : E82 - E82
  • [6] Opportunities and challenges for transcriptome-wide association studies
    Michael Wainberg
    Nasa Sinnott-Armstrong
    Nicholas Mancuso
    Alvaro N. Barbeira
    David A. Knowles
    David Golan
    Raili Ermel
    Arno Ruusalepp
    Thomas Quertermous
    Ke Hao
    Johan L. M. Björkegren
    Hae Kyung Im
    Bogdan Pasaniuc
    Manuel A. Rivas
    Anshul Kundaje
    Nature Genetics, 2019, 51 : 592 - 599
  • [7] Statistical power of transcriptome-wide association studies
    He, Ruoyu
    Xue, Haoran
    Pan, Wei
    GENETIC EPIDEMIOLOGY, 2022, 46 (08) : 572 - 588
  • [8] Probabilistic integration of transcriptome-wide association studies and colocalization analysis identifies key molecular pathways of complex traits
    Okamoto, Jeffrey
    Wang, Lijia
    Yin, Xianyong
    Luca, Francesca
    Pique-Regi, Roger
    Helms, Adam
    Im, Hae Kyung
    Morrison, Jean
    Wen, Xiaoquan
    AMERICAN JOURNAL OF HUMAN GENETICS, 2023, 110 (01) : 44 - 57
  • [9] Network regression analysis in transcriptome-wide association studies
    Xiuyuan Jin
    Liye Zhang
    Jiadong Ji
    Tao Ju
    Jinghua Zhao
    Zhongshang Yuan
    BMC Genomics, 23
  • [10] Some statistical consideration in transcriptome-wide association studies
    Xue, Haoran
    Pan, Wei
    GENETIC EPIDEMIOLOGY, 2020, 44 (03) : 221 - 232