Functionals that do not attain their norm

被引:25
作者
Acosta, Maria D. [1 ]
Aizpuru, Antonio [2 ]
Aron, Richard M. [3 ]
Garcia-Pacheco, Francisco J. [3 ]
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Cadiz, Dept Matemat, Cadiz 11510, Spain
[3] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
norm-attaining functional; non-norm-attaining functional; non-density; density; SETS; LINEABILITY;
D O I
10.36045/bbms/1190994202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the set of non-norm-attaining functionals on a Banach space, giving a sufficient condition for the density of this set. We also find a large class of Banach spaces for which the set of norm-attaining functionals is (dense-) lineable. In addition, among other results, we provide a new proof of the fact that every real Banach space can be equivalently renormed so that the set of non-norm-attaining functionals is non-dense.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 19 条
[1]   New characterizations of the reflexivity in terms of the set of norm attaining functionals [J].
Acosta, MD ;
Galan, MR .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (03) :279-289
[2]   Some questions about rotundity and renormings in Banach spaces [J].
Aizpuru, A ;
Garcia-Pacheco, FJ .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 79 :131-140
[3]  
AIZPURU A, ROTUNDITY TRANSITIVE
[4]  
[Anonymous], 1976, Geometry of Banach Spaces-Selected Topics
[5]   Lineability and spaceability of sets of functions on R [J].
Aron, R ;
Gurariy, VI ;
Seoane, JB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :795-803
[6]   Algebrability of the set of non-convergent Fourier series [J].
Aron, Richard M. ;
Perez-Garcia, David ;
Seoane-Sepulveda, Juan B. .
STUDIA MATHEMATICA, 2006, 175 (01) :83-90
[7]  
Bandyopadhyay P, 2001, TAIWAN J MATH, V5, P19
[8]  
BANDYOPADHYAY P, LINEAR STRUCTURE SET
[9]   Linearity of sets of strange functions [J].
Bayart, F .
MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (02) :291-303
[10]   Topological and algebraic genericity of divergence and universality [J].
Bayart, F .
STUDIA MATHEMATICA, 2005, 167 (02) :161-181