Functionals that do not attain their norm

被引:25
作者
Acosta, Maria D. [1 ]
Aizpuru, Antonio [2 ]
Aron, Richard M. [3 ]
Garcia-Pacheco, Francisco J. [3 ]
机构
[1] Univ Granada, Dept Anal Matemat, E-18071 Granada, Spain
[2] Univ Cadiz, Dept Matemat, Cadiz 11510, Spain
[3] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
关键词
norm-attaining functional; non-norm-attaining functional; non-density; density; SETS; LINEABILITY;
D O I
10.36045/bbms/1190994202
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the set of non-norm-attaining functionals on a Banach space, giving a sufficient condition for the density of this set. We also find a large class of Banach spaces for which the set of norm-attaining functionals is (dense-) lineable. In addition, among other results, we provide a new proof of the fact that every real Banach space can be equivalently renormed so that the set of non-norm-attaining functionals is non-dense.
引用
收藏
页码:407 / 418
页数:12
相关论文
共 19 条
  • [1] New characterizations of the reflexivity in terms of the set of norm attaining functionals
    Acosta, MD
    Galan, MR
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (03): : 279 - 289
  • [2] Some questions about rotundity and renormings in Banach spaces
    Aizpuru, A
    Garcia-Pacheco, FJ
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2005, 79 : 131 - 140
  • [3] AIZPURU A, ROTUNDITY TRANSITIVE
  • [4] [Anonymous], 1976, Geometry of Banach Spaces-Selected Topics
  • [5] Lineability and spaceability of sets of functions on R
    Aron, R
    Gurariy, VI
    Seoane, JB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 795 - 803
  • [6] Algebrability of the set of non-convergent Fourier series
    Aron, Richard M.
    Perez-Garcia, David
    Seoane-Sepulveda, Juan B.
    [J]. STUDIA MATHEMATICA, 2006, 175 (01) : 83 - 90
  • [7] Bandyopadhyay P, 2001, TAIWAN J MATH, V5, P19
  • [8] BANDYOPADHYAY P, LINEAR STRUCTURE SET
  • [9] Linearity of sets of strange functions
    Bayart, F
    [J]. MICHIGAN MATHEMATICAL JOURNAL, 2005, 53 (02) : 291 - 303
  • [10] Topological and algebraic genericity of divergence and universality
    Bayart, F
    [J]. STUDIA MATHEMATICA, 2005, 167 (02) : 161 - 181