Interreader Reliability of LI-RADS Version 2014 Algorithm and Imaging Features for Diagnosis of Hepatocellular Carcinoma: A Large International Multireader Study

被引:86
作者
Fowler, Kathryn J. [1 ]
Tang, An [2 ]
Santillan, Cynthia [3 ]
Bhargavan-Chatfield, Mythreyi [5 ]
Heiken, Jay [1 ]
Jha, Reena C. [6 ]
Weinreb, Jeffrey [7 ]
Hussain, Hero [8 ]
Mitchell, Donald G. [9 ]
Bashir, Mustafa R. [10 ]
Costa, Eduardo A. C. [11 ]
Cunha, Guilherme M. [12 ]
Coombs, Laura [5 ]
Wolfson, Tanya [4 ]
Gamst, Anthony C. [4 ]
Brancatelli, Giuseppe [13 ]
Yeh, Benjamin [14 ]
Sirlin, Claude B. [3 ]
机构
[1] Washington Univ, Sch Med, Mallinckrodt Inst Radiol, 510 S Kingshighway Blvd, St Louis, MO 63110 USA
[2] Ctr Hosp Univ Montreal, Dept Radiol, Montreal, PQ, Canada
[3] Univ Calif San Diego, Dept Radiol, Liver Imaging Grp, San Diego, CA 92103 USA
[4] Univ Calif San Diego, Computat & Appl Stat Lab, San Diego Supercomp Ctr, San Diego, CA 92103 USA
[5] Amer Coll Radiol, Reston, VA USA
[6] MedStar Georgetown Univ Hosp, Dept Radiol, Washington, DC USA
[7] Yale Med Sch, Dept Radiol, New Haven, CT USA
[8] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[9] Thomas Jefferson Univ, Dept Radiol, Philadelphia, PA 19107 USA
[10] Duke Univ, Med Ctr, Dept Radiol, Ctr Adv Magnet Resonance Dev, Durham, NC 27710 USA
[11] Cedrul CT & MRI, Joao Pessoa, Paraiba, Brazil
[12] Clin Diagnost Imagem CDPI DASA, Rio De Janeiro, Brazil
[13] Univ Palermo, Div Radiol Sci, Di Bi Med, Palermo, Italy
[14] Univ Calif San Francisco, Dept Radiol, San Francisco, CA USA
关键词
INTRACLASS CORRELATION-COEFFICIENT; DATA SYSTEM; CIRRHOTIC LIVER; MR; NODULES; CANCER; CT; CLASSIFICATION; ALLOCATION; WASHOUT;
D O I
10.1148/radiol.2017170376
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To determine in a large multicenter multireader setting the interreader reliability of Liver Imaging Reporting and Data System (LI-RADS) version 2014 categories, the major imaging features seen with computed tomography (CT) and magnetic resonance (MR) imaging, and the potential effect of reader demographics on agreement with a preselected nonconsecutive image set. Materials and Methods: Institutional review board approval was obtained, and patient consent was waived for this retrospective study. Ten image sets, comprising 38-40 unique studies (equal number of CT and MR imaging studies, uniformly distributed LI-RADS categories), were randomly allocated to readers. Images were acquired in unenhanced and standard contrast material-enhanced phases, with observation diameter and growth data provided. Readers completed a demographic survey, assigned LI-RADS version 2014 categories, and assessed major features. Intraclass correlation coefficient (ICC) assessed with mixed-model regression analyses was the metric for interreader reliability of assigning categories and major features. Results: A total of 113 readers evaluated 380 image sets. ICC of final LI-RADS category assignment was 0.67 (95% confidence interval [CI]: 0.61, 0.71) for CT and 0.73 (95% CI: 0.68, 0.77) for MR imaging. ICC was 0.87 (95% CI: 0.84, 0.90) for arterial phase hyperenhancement, 0.85 (95% CI: 0.81, 0.88) for washout appearance, and 0.84 (95% CI: 0.80, 0.87) for capsule appearance. ICC was not significantly affected by liver expertise, LI-RADS familiarity, or years of postresidency practice (ICC range, 0.69-0.70; ICC difference, 0.003-0.01 [95% CI: -0.003 to -0.01, 0.004-0.02]. ICC was borderline higher for private practice readers than for academic readers (ICC difference, 0.009; 95% CI: 0.000, 0.021). Conclusion: ICC is good for final LI-RADS categorization and high for major feature characterization, with minimal reader demographic effect. Of note, our results using selected image sets from nonconsecutive examinations are not necessarily comparable with those of prior studies that used consecutive examination series. (C) RSNA, 2017.
引用
收藏
页码:173 / 185
页数:13
相关论文
共 50 条
  • [1] Increased interreader agreement in diagnosis of hepatocellular carcinoma using an adapted LI-RADS algorithm
    Becker, Anton S.
    Barth, Borna K.
    Marquez, Paulo H.
    Donati, Olivio F.
    Ulbrich, Erika J.
    Karlo, Christoph
    Reiner, Caecilia S.
    Fischer, Michael A.
    EUROPEAN JOURNAL OF RADIOLOGY, 2017, 86 : 33 - 40
  • [2] Imaging diagnosis of hepatocellular carcinoma: LI-RADS
    Cunha, Guilherme Moura
    Sirlin, Claude B.
    Fowler, Kathryn J.
    CHINESE CLINICAL ONCOLOGY, 2021, 10 (01)
  • [3] LI-RADS for CT diagnosis of hepatocellular carcinoma: performance of major and ancillary features
    Alhasan, Ayman
    Cerny, Milena
    Olivie, Damien
    Billiard, Jean-Sebastien
    Bergeron, Catherine
    Brown, Kip
    Bodson-Clermont, Paule
    Castel, Helene
    Turcotte, Simon
    Perreault, Pierre
    Tang, An
    ABDOMINAL RADIOLOGY, 2019, 44 (02) : 517 - 528
  • [4] A Multicenter Assessment of Interreader Reliability of LI-RADS Version 2018 for MRI and CT
    Hong, Cheng William
    Chernyak, Victoria
    Choi, Jin-Young
    Lee, Sonia
    Potu, Chetan
    Delgado, Timoteo
    Wolfson, Tanya
    Gamst, Anthony
    Birnbaum, Jason
    Kampalath, Rony
    Lall, Chandana
    Lee, James T.
    Owen, Joseph W.
    Aguirre, Diego A.
    Mendiratta-Lala, Mishal
    Davenport, Matthew S.
    Masch, William
    Roudenko, Alexandra
    Lewis, Sara C.
    Kierans, Andrea Siobhan
    Hecht, Elizabeth M.
    Bashir, Mustafa R.
    Brancatelli, Giuseppe
    Douek, Michael L.
    Ohliger, Michael A.
    Tang, An
    Cerny, Milena
    Fung, Alice
    Costa, Eduardo A.
    Corwin, Michael T.
    McGahan, John P.
    Kalb, Bobby
    Elsayes, Khaled M.
    Surabhi, Venkateswar R.
    Blair, Katherine
    Marks, Robert M.
    Horvat, Natally
    Best, Shaun
    Ash, Ryan
    Ganesan, Karthik
    Kagay, Christopher R.
    Kambadakone, Avinash
    Wang, Jin
    Cruite, Irene
    Bijan, Bijan
    Goodwin, Mark
    Cunha, Guilherme Moura
    Tamayo-Murillo, Dorathy
    Fowler, Kathryn J.
    Sirlin, Claude B.
    RADIOLOGY, 2023, 307 (05)
  • [5] LI-RADS for MR Imaging Diagnosis of Hepatocellular Carcinoma: Performance of Major and Ancillary Features
    Cerny, Milena
    Bergeron, Catherine
    Billiard, Jean-Sebastien
    Murphy-Lavallee, Jessica
    Olivie, Damien
    Berube, Joshua
    Fan, Boyan
    Castel, Helene
    Turcotte, Simon
    Perreault, Pierre
    Chagnon, Miguel
    Tang, An
    RADIOLOGY, 2018, 288 (01) : 118 - 128
  • [6] LI-RADS Version 2017 versus Version 2018: Diagnosis of Hepatocellular Carcinoma on Gadoxetate Disodium enhanced MRI
    Lee, Sang Min
    Lee, Jeong Min
    Ahn, Su Joa
    Kang, Hyo-Jin
    Yang, Hyun Kyung
    Yoon, Jeong Hee
    RADIOLOGY, 2019, 292 (03) : 655 - 663
  • [7] Standardizing diffusion-weighted imaging in LI-RADS for diagnosis of hepatocellular carcinoma
    Scialpi, Michele
    Evangelisti, Arianna
    Shehu, Klesta
    Comite, Paola
    Antogiovanni, Giuseppe Nazareno
    Scalera, Giovanni Battista
    EUROPEAN RADIOLOGY, 2025, 35 (02) : 695 - 697
  • [8] Diagnostic Performance of LI-RADS Version 2018, LI-RADS Version 2017, and OPTN Criteria for Hepatocellular Carcinoma
    Kierans, Andrea S.
    Song, Christopher
    Gavlin, Alexander
    Roudenko, Alexandra
    Lu, Lina
    Askin, Gulce
    Hecht, Elizabeth M.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2020, 215 (05) : 1085 - 1092
  • [9] Imaging features of histological subtypes of hepatocellular carcinoma: Implication for LI-RADS
    Cannella, Roberto
    Burgio, Marco Dioguardi
    Beaufrere, Aurelie
    Trapani, Loic
    Paradis, Valerie
    Hobeika, Christian
    Cauchy, Francois
    Bouattour, Mohamed
    Vilgrain, Valerie
    Sartoris, Riccardo
    Ronot, Maxime
    JHEP REPORTS, 2021, 3 (06)
  • [10] LI-RADS for CT diagnosis of hepatocellular carcinoma: performance of major and ancillary features
    Ayman Alhasan
    Milena Cerny
    Damien Olivié
    Jean-Sébastien Billiard
    Catherine Bergeron
    Kip Brown
    Paule Bodson-Clermont
    Hélène Castel
    Simon Turcotte
    Pierre Perreault
    An Tang
    Abdominal Radiology, 2019, 44 : 517 - 528