Tailoring the surface energy and area surface resistance of solid-electrolyte polymer membrane for dendrite free, high-performance, and safe solid-state Li-batteries

被引:1
|
作者
Dubey, Brahma Prakash [1 ]
Sahoo, Asit [1 ]
Sharma, Yogesh [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Phys, Roorkee 247667, Uttaranchal, India
关键词
Surface energy; Solid-state electrolyte membrane; Low ASR; Dendrite-free; Percolation; IONIC-CONDUCTIVITY; PARTICLE-SIZE; LITHIUM;
D O I
10.1016/j.jpowsour.2022.231690
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid electrolyte polymer composite enabled solid-state lithium batteries have shown extensive viability for mass production and commerciality for advanced energy storage technology. Most studies of polymer composite electrolyte are produced by solution casting and free-standing methods, where ionic conductors are randomly distributed into the polymeric network, suffering from poor ionic conductivity and agglomeration during charge/ discharge cycling. In this work, using the threshold percolation model and critical volume fraction requirement, we have designed a highly efficient garnet-type ion-conducting nanofibrous sheet where ionic conductors of different aspect ratios are dispersed to tune the surface roughness, area surface resistance, and wettability of the developed electrolyte membrane. Moreover, the impact of filler volume fraction and percolation threshold on the surface properties of the membrane, regulating the area interfacial resistance of the Li metal cell has also been examined, which has not been studied so far in the literature. The corresponding high potential cathode-based lithium assembled coin cells exhibit an excellent specific capacity of 170 mAh g-1 at 0.3C, with high capacity retention under ambient circumstances. By optimizing the critical aspect ratio of the fillers and the percolation threshold, a high-performing solid electrolyte membrane can be realized for advanced and safer Li-batteries technology.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Garnet/polymer solid electrolytes for high-performance solid-state lithium metal batteries: The role of amorphous Li2O2
    Khan, Kashif
    Xin, Hu
    Fu, Bowen
    Hanif, Muhammad Bilal
    Li, Pengyu
    Beshiwork, Bayu Admasu
    Fang, Zixuan
    Motola, Martin
    Xu, Ziqiang
    Wu, Mengqiang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 642 : 246 - 254
  • [22] PEO-based solid-state electrolyte modified by cationic covalent organic frameworks enabling high-performance all-solid-state Li metal and graphite anode batteries
    Chen, Jing
    Han, Sheng
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [23] Ultrathin Solid Polymer Electrolyte Design for High-Performance Li Metal Batteries: A Perspective of Synthetic Chemistry
    Wang, Qian
    Wang, Shi
    Lu, Tiantian
    Guan, Lixiang
    Hou, Lifeng
    Du, Huayun
    Wei, Huan
    Liu, Xiaoda
    Wei, Yinghui
    Zhou, Henghui
    ADVANCED SCIENCE, 2023, 10 (01)
  • [24] High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation
    Yang, Jingjing
    Wang, Xun
    Zhang, Gai
    Ma, Aijie
    Chen, Weixing
    Shao, Le
    Shen, Chao
    Xie, Keyu
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [25] Unconventional PEO-PPC quasi-solid state blend polymer electrolyte for high efficiency solid-state Li-metal batteries
    Bertoli, Luca
    Gabriele, Giacomo
    Gibertini, Eugenio
    Magagnin, Luca
    JOURNAL OF ENERGY STORAGE, 2024, 81
  • [26] Two-Dimensional Fluorinated Graphene Reinforced Solid Polymer Electrolytes for High-Performance Solid-State Lithium Batteries
    Zhai, Pengbo
    Yang, Zhilin
    Wei, Yi
    Guo, Xiangxin
    Gong, Yongji
    ADVANCED ENERGY MATERIALS, 2022, 12 (42)
  • [27] Metal organic framework reinforced polymer electrolyte with high cation transference number to enable dendrite-free solid state Li metal conversion batteries
    Wu, Xiaoxue
    Chen, Keyi
    Yao, Zhenguo
    Hu, Jiulin
    Huang, Minsong
    Meng, Junwei
    Ma, Shiping
    Wu, Tao
    Cui, Yanhua
    Li, Chilin
    JOURNAL OF POWER SOURCES, 2021, 501
  • [28] An integrated polymer/electrode interface for high performance ceramic/polymer electrolyte-based solid-state lithium batteries
    Yan, Tingfang
    Han, Songyi
    Wu, Xiaomeng
    Jia, Di
    Chen, Yuhua
    Tian, Wensheng
    Wu, Yongmin
    Zhu, Lei
    Tang, Weiping
    APPLIED PHYSICS LETTERS, 2022, 121 (15)
  • [29] Compact Solid Electrolyte Interface Realization Employing Surface-Modified Fillers for Long-Lasting, High-Performance All-Solid-State Li-Metal Batteries
    Jamal, Hasan
    Khan, Firoz
    Kim, Ji Hoon
    Kim, Eunhui
    Lee, Sang Uck
    Kim, Jae Hyun
    SMALL, 2024, 20 (45)
  • [30] High-performance quaternary polymer solid-state electrolyte via one-step casting method
    Wang, Zhen-yu
    Li, Cong
    Li, Jing-yi
    He, Zhen-jiang
    Cheng, Yi
    Yan, Cheng
    Mao, Jing
    Dai, Ke-Hua
    Zhang, Xia-hui
    Zheng, Jun-chao
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (38)