Well-posedness and attractor on the 2D Kirchhoff-Boussinesq models

被引:2
作者
Feng, Na [1 ]
Yang, Zhijian [2 ]
机构
[1] Zhongyuan Univ Technol, Coll Sci, 41 Zhongyuan Rd, Zhengzhou 450007, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, 100 Sci Rd, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff-Boussinesq models; Well-posedness; Global attractor; Exponential attractor; CAHN-HILLIARD EQUATION; GLOBAL EXISTENCE; LONGTIME DYNAMICS; SMOOTH SOLUTIONS; WAVE-EQUATION; STABILITY;
D O I
10.1016/j.na.2020.111803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper studies the well-posedness and the existence of attractors for a class of 2D Kirchhoff-Boussinesq models: u(tt) + ku(t) +Delta(2)u = gamma div{del u/root 1+vertical bar del u vertical bar(2)} + beta Delta g(u), with beta >= 0, gamma >= 0, beta + gamma > 0. We show that: (i) the IBVP of the equations is well-posed in natural energy space X-2 and strong solution space X-4, respectively, provided that vertical bar g ''(s)vertical bar <= C(1 + vertical bar s vertical bar(2)); (ii) the related solution semigroup has a global and an (generalized) exponential attractor in X-2 provided that the damping parameter k is suitably large and vertical bar g ''(s)vertical bar <= C; (iii) in particular when gamma = 0, the corresponding Boussinesq model has a subclass J of limit solutions and the subclass J has a weak global attractor in energy space X-1 without any upper bound restriction for the growth exponent of g(u); (iv) in the cases that either beta = 0 or gamma = 0, the corresponding model has a global attractor in X-4 provided that vertical bar g ''(s)vertical bar <= C(1 + vertical bar s vertical bar) and without any restriction for the damping parameter k > 0. Especially when gamma = 0, the corresponding results extend those in Grassell et al. (2009). (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:29
相关论文
共 29 条
  • [1] [Anonymous], 1989, Boundary Stabilization of Thin Plates
  • [2] Ball JM, 2004, DISCRETE CONT DYN-A, V10, P31
  • [3] GLOBAL EXISTENCE OF SMOOTH SOLUTIONS AND STABILITY OF SOLITARY WAVES FOR A GENERALIZED BOUSSINESQ EQUATION
    BONA, JL
    SACHS, RL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) : 15 - 29
  • [4] MODEL FOR 2-WAY PROPAGATION OF WATER WAVES IN A CHANNEL
    BONA, JL
    SMITH, R
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) : 167 - 182
  • [5] Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
  • [6] DAMPED WAVE EQUATIONS WITH FAST GROWING DISSIPATIVE NONLINEARITIES
    Carvalho, A. N.
    Cholewa, J. W.
    Dlotko, Tomasz
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (04) : 1147 - 1165
  • [7] Chueshov I, 2006, DISCRETE CONT DYN-A, V15, P777
  • [8] Chueshov I, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-0-387-87712-9
  • [9] On Global Attractor for 2D Kirchhoff-Boussinesq Model with Supercritical Nonlinearity
    Chueshov, Igor
    Lasiecka, Irena
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (01) : 67 - 99
  • [10] On the 3D Cahn-Hilliard equation with inertial term
    Grasselli, Maurizio
    Schimperna, Giulio
    Segatti, Antonio
    Zelik, Sergey
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (02) : 371 - 404