Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation

被引:21
|
作者
Du, Zengji [1 ]
Li, Ji [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
Geometric singular perturbation theory; Camassa-Holm equation; Solitary wave solutions; Invariant manifold; Homoclinic orbits; TRAVELING-WAVE SOLUTIONS; SHALLOW-WATER EQUATION; KORTEWEG-DE-VRIES; MODEL-EQUATIONS; WELL-POSEDNESS; EXISTENCE; DYNAMICS; BREAKING; SYSTEMS; FOLD;
D O I
10.1016/j.jde.2021.10.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze a singularly Kuramoto-Sivashinsky perturbed Camassa-Holm equation with methods of the geometric singular perturbation theory. Especially, we study the persistence of smooth and peaked solitons. Whether a solitary wave of the original Camassa-Holm equation is smooth or peaked depends on whether there is linear dispersion, i.e. whether 2k = 0. If 2k > 0, then a unique smooth solitary wave persists with selected wave speed under singular Kuramoto-Sivashinsky perturbation just as what happens in the KS-KdV equation. On the other hand, we show that if there is no linear dispersion, i.e. 2k = 0, then any observable peaked soliton fails to persist. This case is non-typical since the related slow manifold blows up and the classical geometric singular perturbation theory is not available. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 438
页数:21
相关论文
共 50 条
  • [41] On H 2-solutions for a Camassa-Holm type equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    OPEN MATHEMATICS, 2023, 21 (01):
  • [42] An asymptotic property of the Camassa-Holm equation
    Jia, Jia
    Kang, Shun-Guang
    Tang, Tai-Man
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 97 : 55 - 64
  • [43] A Note on the Generalized Camassa-Holm Equation
    Wu, Yun
    Zhao, Ping
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [44] Multisymplectic method for the Camassa-Holm equation
    Zhang, Yu
    Deng, Zi-Chen
    Hu, Wei-Peng
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 12
  • [45] Backlund Transformations for the Camassa-Holm Equation
    Rasin, Alexander G.
    Schiff, Jeremy
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (01) : 45 - 69
  • [46] Differential invariants of Camassa-Holm equation
    Li, Wei
    Su, Zhong-Yu
    Wang, Fei
    Li, Wen-Ting
    CHINESE JOURNAL OF PHYSICS, 2019, 59 : 153 - 159
  • [47] Wave Breaking of the Camassa-Holm Equation
    Jiang, Zaihong
    Ni, Lidiao
    Zhou, Yong
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (02) : 235 - 245
  • [48] The analysis of operator splitting methods for the Camassa-Holm equation
    Zhan, Rui
    Zhao, Jingjun
    APPLIED NUMERICAL MATHEMATICS, 2018, 130 : 1 - 22
  • [49] On a dissipative form of Camassa-Holm equation
    Yu, Shengqi
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [50] The Cauchy problem for a generalized Camassa-Holm equation with the velocity potential
    Lin, Bohuan
    Yin, Zhaoyang
    APPLICABLE ANALYSIS, 2018, 97 (03) : 354 - 367