Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation

被引:21
|
作者
Du, Zengji [1 ]
Li, Ji [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
Geometric singular perturbation theory; Camassa-Holm equation; Solitary wave solutions; Invariant manifold; Homoclinic orbits; TRAVELING-WAVE SOLUTIONS; SHALLOW-WATER EQUATION; KORTEWEG-DE-VRIES; MODEL-EQUATIONS; WELL-POSEDNESS; EXISTENCE; DYNAMICS; BREAKING; SYSTEMS; FOLD;
D O I
10.1016/j.jde.2021.10.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze a singularly Kuramoto-Sivashinsky perturbed Camassa-Holm equation with methods of the geometric singular perturbation theory. Especially, we study the persistence of smooth and peaked solitons. Whether a solitary wave of the original Camassa-Holm equation is smooth or peaked depends on whether there is linear dispersion, i.e. whether 2k = 0. If 2k > 0, then a unique smooth solitary wave persists with selected wave speed under singular Kuramoto-Sivashinsky perturbation just as what happens in the KS-KdV equation. On the other hand, we show that if there is no linear dispersion, i.e. 2k = 0, then any observable peaked soliton fails to persist. This case is non-typical since the related slow manifold blows up and the classical geometric singular perturbation theory is not available. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 438
页数:21
相关论文
共 50 条
  • [31] On the isospectral problem of the dispersionless Camassa-Holm equation
    Eckhardt, Jonathan
    Teschl, Gerald
    ADVANCES IN MATHEMATICS, 2013, 235 : 469 - 495
  • [32] On the global boundary stabilization of the Camassa-Holm equation
    Zong, Xiju
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 15 : 221 - 228
  • [33] GEOMETRIC SINGULAR PERTURBATION ANALYSIS OF DEGASPERIS-PROCESI EQUATION WITH DISTRIBUTED DELAY
    Cheng, Feifei
    Li, Ji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (02) : 967 - 985
  • [34] Radius of analyticity for the Camassa-Holm equation on the line
    Himonas, A. Alexandrou
    Petronilho, Gerson
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 174 : 1 - 16
  • [35] On the Cauchy problem for a modified Camassa-Holm equation
    Luo, Zhaonan
    Qiao, Zhijun
    Yin, Zhaoyang
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (04): : 857 - 877
  • [36] The support of the momentum density of the Camassa-Holm equation
    Kang, Shun-Guang
    Tang, Tai-Man
    APPLIED MATHEMATICS LETTERS, 2011, 24 (12) : 2128 - 2132
  • [37] ON THE CAUCHY PROBLEM FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Chen, Defu
    Li, Yongsheng
    Yan, Wei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (03) : 871 - 889
  • [38] The Cauchy problem for the generalized Camassa-Holm equation in Besov space
    Yan, Wei
    Li, Yongsheng
    Zhang, Yimin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (08) : 2876 - 2901
  • [39] Traveling waves of delayed Zakharov-Kuznetsov Kuramoto-Sivashinsky equation
    Ge, Jianjiang
    Wu, Ranchao
    WAVE MOTION, 2024, 125
  • [40] Nonlinear Forecasting of the Generalized Kuramoto-Sivashinsky Equation
    Gotoda, Hiroshi
    Pradas, Marc
    Kalliadasis, Serafim
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05):