Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation

被引:21
|
作者
Du, Zengji [1 ]
Li, Ji [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
Geometric singular perturbation theory; Camassa-Holm equation; Solitary wave solutions; Invariant manifold; Homoclinic orbits; TRAVELING-WAVE SOLUTIONS; SHALLOW-WATER EQUATION; KORTEWEG-DE-VRIES; MODEL-EQUATIONS; WELL-POSEDNESS; EXISTENCE; DYNAMICS; BREAKING; SYSTEMS; FOLD;
D O I
10.1016/j.jde.2021.10.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze a singularly Kuramoto-Sivashinsky perturbed Camassa-Holm equation with methods of the geometric singular perturbation theory. Especially, we study the persistence of smooth and peaked solitons. Whether a solitary wave of the original Camassa-Holm equation is smooth or peaked depends on whether there is linear dispersion, i.e. whether 2k = 0. If 2k > 0, then a unique smooth solitary wave persists with selected wave speed under singular Kuramoto-Sivashinsky perturbation just as what happens in the KS-KdV equation. On the other hand, we show that if there is no linear dispersion, i.e. 2k = 0, then any observable peaked soliton fails to persist. This case is non-typical since the related slow manifold blows up and the classical geometric singular perturbation theory is not available. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 438
页数:21
相关论文
共 50 条
  • [21] Modulation Analysis of the Stochastic Camassa-Holm Equation with Pure Jump Noise
    Chen, Yong
    Duan, Jinqiao
    Gao, Hongjun
    Guo, Xingyu
    JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (03)
  • [22] Solutions of the Camassa-Holm equation with accumulating breaking times
    Grunert, Katrin
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2016, 13 (02) : 91 - 105
  • [23] On the Solutions for the Conserved Kuramoto-Sivashinsky Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    MILAN JOURNAL OF MATHEMATICS, 2025,
  • [24] Stability of peakons for the generalized modified Camassa-Holm equation
    Guo, Zihua
    Liu, Xiaochuan
    Liu, Xingxing
    Qu, Changzheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (12) : 7749 - 7779
  • [25] Lower order regularity for the generalized Camassa-Holm equation
    Mi, Yongsheng
    Guo, Boling
    Mu, Chunlai
    APPLICABLE ANALYSIS, 2017, 96 (07) : 1126 - 1137
  • [26] Orbital Stability of Peakons for the Modified Camassa-Holm Equation
    Li, Ji
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (01) : 148 - 160
  • [27] OPTIMAL SOLUTION FOR THE VISCOUS MODIFIED CAMASSA-HOLM EQUATION
    Gao, Anna
    Shen, Chunyu
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (04) : 571 - 589
  • [28] The Cauchy problem for a generalized Camassa-Holm equation
    Mi, Yongsheng
    Liu, Yue
    Guo, Boling
    Luo, Ting
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (10) : 6739 - 6770
  • [29] Global existence of dissipative solutions to the Camassa-Holm equation with transport noise
    Galimberti, L.
    Holden, H.
    Karlsen, K. H.
    Pang, P. H. C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 387 : 1 - 103
  • [30] The Uniqueness of Strong Solutions for the Camassa-Holm Equation
    Wu, Meng
    Lai, Chong
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,