Geometric singular perturbation analysis to Camassa-Holm Kuramoto-Sivashinsky equation

被引:21
|
作者
Du, Zengji [1 ]
Li, Ji [2 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
关键词
Geometric singular perturbation theory; Camassa-Holm equation; Solitary wave solutions; Invariant manifold; Homoclinic orbits; TRAVELING-WAVE SOLUTIONS; SHALLOW-WATER EQUATION; KORTEWEG-DE-VRIES; MODEL-EQUATIONS; WELL-POSEDNESS; EXISTENCE; DYNAMICS; BREAKING; SYSTEMS; FOLD;
D O I
10.1016/j.jde.2021.10.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We analyze a singularly Kuramoto-Sivashinsky perturbed Camassa-Holm equation with methods of the geometric singular perturbation theory. Especially, we study the persistence of smooth and peaked solitons. Whether a solitary wave of the original Camassa-Holm equation is smooth or peaked depends on whether there is linear dispersion, i.e. whether 2k = 0. If 2k > 0, then a unique smooth solitary wave persists with selected wave speed under singular Kuramoto-Sivashinsky perturbation just as what happens in the KS-KdV equation. On the other hand, we show that if there is no linear dispersion, i.e. 2k = 0, then any observable peaked soliton fails to persist. This case is non-typical since the related slow manifold blows up and the classical geometric singular perturbation theory is not available. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 438
页数:21
相关论文
共 50 条
  • [1] Singular limit problem of the Camassa-Holm type equation
    Hwang, Seok
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (01) : 74 - 84
  • [2] A note on the Camassa-Holm equation
    Coclite, G. M.
    Karlsen, K. H.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2158 - 2166
  • [3] THE DYNAMIC PROPERTIES OF A GENERALIZED KAWAHARA EQUATION WITH KURAMOTO-SIVASHINSKY PERTURBATION
    Chen, Shuting
    Du, Zengji
    Liu, Jiang
    Wang, Ke
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (03): : 1471 - 1496
  • [4] The Attractors of Camassa-Holm Equation in Unbounded Domains
    Yue, Gaocheng
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 2211 - 2240
  • [5] Geometric integrability of the Camassa-Holm equation
    Reyes, EG
    LETTERS IN MATHEMATICAL PHYSICS, 2002, 59 (02) : 117 - 131
  • [6] A Note on a Camassa-Holm Type Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    JOURNAL OF APPLIED NONLINEAR DYNAMICS, 2025, 14 (02) : 299 - 311
  • [7] The Modified Camassa-Holm Equation
    Gorka, Przemyslaw
    Reyes, Enrique G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (12) : 2617 - 2649
  • [8] Existence and analyticity of solutions of the Kuramoto-Sivashinsky equation with singular data
    Ambrose, David M.
    Lopes Filho, Milton C.
    Nussenzveig Lopes, Helena J.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
  • [9] Geometric Integrability of the Camassa-Holm Equation. II
    Hernandez Heredero, Rafael
    Reyes, Enrique G.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (13) : 3089 - 3125
  • [10] Stability of periodic peakons for the modified μ-Camassa-Holm equation
    Liu, Yue
    Qu, Changzheng
    Zhang, Ying
    PHYSICA D-NONLINEAR PHENOMENA, 2013, 250 : 66 - 74