Automated detection of COVID-19 on a small dataset of chest CT images using metric learning

被引:1
|
作者
Madan, Shipra [1 ]
Chaudhury, Santanu [2 ]
Gandhi, Tapan Kumar [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Delhi, India
[2] Indian Inst Technol, Dept Comp Sci & Engn, Jodhpur, Rajasthan, India
来源
2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2021年
关键词
COVID-19; Triplet loss; chest CT; few-shot learning; medical image analysis;
D O I
10.1109/IJCNN52387.2021.9533831
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Coronavirus disease has caused unprecedented chaos across the globe causing potentially fatal pneumonia, since the beginning of 2020. Researchers from different communities are working in conjunction with front-line doctors and policy-makers to better understand the disease. The key to prevent the spread is a rapid diagnosis, prioritized isolation, and fastidious contact tracing. Recent studies have confirmed the presence of underlying patterns on chest CT for patients with COVID-19. We present a completely automated framework to detect COVID-19 using chest CT scans, only needing a small number of training samples. We present a few-shot learning technique based on the Triplet network in comparison to the conventional deep learning techniques which require a substantial amount of training examples. We used 140 chest CT images for training and the rest for testing from a total of 2482 images for both COVID-19 and non-COVID-19 cases from a publicly available dataset. The model trained with chest CT images achieves an AUC of 0.94, separates the two classes into distinct clusters; thereby giving correct prediction accuracy on the evaluation dataset.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] An Efficient Deep Learning Approach for Detection of COVID-19 from Chest CT Scan Images
    Patil, Pravin Bhimbhai
    Patil, Nitin Jagannath
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 661 - 670
  • [22] COVID-19 detection in CT and CXR images using deep learning models
    Ines Chouat
    Amira Echtioui
    Rafik Khemakhem
    Wassim Zouch
    Mohamed Ghorbel
    Ahmed Ben Hamida
    Biogerontology, 2022, 23 : 65 - 84
  • [23] COVID-19 detection in CT and CXR images using deep learning models
    Chouat, Ines
    Echtioui, Amira
    Khemakhem, Rafik
    Zouch, Wassim
    Ghorbel, Mohamed
    Ben Hamida, Ahmed
    BIOGERONTOLOGY, 2022, 23 (01) : 65 - 84
  • [24] Advancements in Automated Detection of COVID-19 in Human Chest CT Scans Using DLNN Techniques
    Javhav A.
    Pujari S.
    Trends in Biomaterials and Artificial Organs, 2024, 38 (02) : 99 - 104
  • [25] Automatic detection of COVID-19 from chest CT scan and chest X-Rays images using deep learning, transfer learning and stacking
    Jangam, Ebenezer
    Barreto, Aaron Antonio Dias
    Annavarapu, Chandra Sekhara Rao
    APPLIED INTELLIGENCE, 2022, 52 (02) : 2243 - 2259
  • [26] Prediction of COVID-19 from Chest CT Images Using an Ensemble of Deep Learning Models
    Biswas, Shreya
    Chatterjee, Somnath
    Majee, Arindam
    Sen, Shibaprasad
    Schwenker, Friedhelm
    Sarkar, Ram
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [27] A dataset of COVID-19 x-ray chest images
    Fraiwan, Mohammad
    Khasawneh, Natheer
    Khassawneh, Basheer
    Ibnian, Ali
    DATA IN BRIEF, 2023, 47
  • [28] Vision Transformer Based COVID-19 Detection Using Chest CT-scan images
    Sahoo, Pranab
    Saha, Sriparna
    Mondal, Samrat
    Gowda, Suraj
    2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22), 2022,
  • [29] Detection of COVID-19 from Chest CT Images Using CNN with MLP Hybrid Model
    Rajasekar, Sakthi Jaya Sundar
    Narayanan, Vasumathi
    Perumal, Varalakshmi
    PHEALTH 2021, 2021, 285 : 288 - 291
  • [30] Automated COVID-19 detection in chest X-ray images using fine-tuned deep learning architectures
    Aggarwal, Sonam
    Gupta, Sheifali
    Alhudhaif, Adi
    Koundal, Deepika
    Gupta, Rupesh
    Polat, Kemal
    EXPERT SYSTEMS, 2022, 39 (03)